Texture Analysis on Digital Microscopic Leather Images For Species Identification

Anjli Varghese, M. Jawahar, A. Prince, A. Gandomi
{"title":"Texture Analysis on Digital Microscopic Leather Images For Species Identification","authors":"Anjli Varghese, M. Jawahar, A. Prince, A. Gandomi","doi":"10.1109/ISCMI56532.2022.10068472","DOIUrl":null,"url":null,"abstract":"This paper describes the relevance of texture analysis on leather images. The aim is to improve the prediction accuracy by quantifying the morphological and statistical behavior of the leather images. Hence, the present work proposed to combine the multi-resolution discrete wavelet transform (DWT) and local binary pattern (LBP) texture operators. The hybrid texture features (DWT + LBP) offer better species-specific feature discrimination. This work adopts a multi-layer perceptron (MLP) model to evaluate the discriminatory behavior of the texture features. The proposed work extract, analyze and learn the species' distinct texture features of the novel digital microscopic leather image data. The experimental results noted a significant improvement in species prediction with 99.58% accuracy. Therefore, texture analysis elevates the ability to interpret the leather images per species. It is thus a necessary key to learn the permissible leather species' behavior so as to prevent the trade of non-permissible leather and its products.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the relevance of texture analysis on leather images. The aim is to improve the prediction accuracy by quantifying the morphological and statistical behavior of the leather images. Hence, the present work proposed to combine the multi-resolution discrete wavelet transform (DWT) and local binary pattern (LBP) texture operators. The hybrid texture features (DWT + LBP) offer better species-specific feature discrimination. This work adopts a multi-layer perceptron (MLP) model to evaluate the discriminatory behavior of the texture features. The proposed work extract, analyze and learn the species' distinct texture features of the novel digital microscopic leather image data. The experimental results noted a significant improvement in species prediction with 99.58% accuracy. Therefore, texture analysis elevates the ability to interpret the leather images per species. It is thus a necessary key to learn the permissible leather species' behavior so as to prevent the trade of non-permissible leather and its products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于物种识别的数字显微皮革图像纹理分析
本文阐述了皮革图像纹理分析的相关性。目的是通过量化皮革图像的形态和统计行为来提高预测精度。因此,本文提出将多分辨率离散小波变换(DWT)与局部二值模式(LBP)纹理算子相结合。混合纹理特征(DWT + LBP)提供了更好的物种特异性特征识别。本文采用多层感知器(MLP)模型来评估纹理特征的区别行为。本文对新型数字显微皮革图像数据中物种鲜明的纹理特征进行提取、分析和学习。实验结果表明,物种预测准确率显著提高,达到99.58%。因此,纹理分析提高了解释每个物种皮革图像的能力。因此,了解允许皮革品种的行为,是防止不允许皮革及其制品贸易的必要关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Gain-Ant Colony Algorithm for Green Vehicle Routing Problem Fake News Detection Using Deep Learning and Natural Language Processing Optimizing Speed and Accuracy Trade-off in Machine Learning Models via Stochastic Gradient Descent Approximation Modeling and Optimization of Two-Chamber Muffler by Genetic Algorithm A Novel Approach for Federated Learning with Non-IID Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1