A neural clustering approach to iso-resource grouping for acute healthcare in Australia

Eu-Gene Siew, K. Smith‐Miles, L. Churilov, M. Ibrahim
{"title":"A neural clustering approach to iso-resource grouping for acute healthcare in Australia","authors":"Eu-Gene Siew, K. Smith‐Miles, L. Churilov, M. Ibrahim","doi":"10.1109/HICSS.2002.994125","DOIUrl":null,"url":null,"abstract":"Knowledge about resource consumption and utilisation is vital in modern healthcare environments. In order to manage both human and material resources efficiently, a typical approach is to group the patients based on common characteristics. The most widely used approach is driven by the Case Mix funding formula, namely to classify patients according to diagnostic related groups (DRGs). Although it is clinically meaningful, our experience suggests that DRG groupings do not necessarily present a sound basis for relevant knowledge generation. We propose an alternative grouping of the patients based on a neural clustering approach, which generates homogeneous groups of patients with similar resource utilisation characteristics. Demographic information is used to generate the clusters, which reveal interesting differences in resource utilisation patterns. A detailed case study is presented to demonstrate the quality of knowledge generated by this process. The proposed approach can therefore be seen as an evidence-based predictive tool with high knowledge generation capabilities.","PeriodicalId":366006,"journal":{"name":"Proceedings of the 35th Annual Hawaii International Conference on System Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Annual Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2002.994125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Knowledge about resource consumption and utilisation is vital in modern healthcare environments. In order to manage both human and material resources efficiently, a typical approach is to group the patients based on common characteristics. The most widely used approach is driven by the Case Mix funding formula, namely to classify patients according to diagnostic related groups (DRGs). Although it is clinically meaningful, our experience suggests that DRG groupings do not necessarily present a sound basis for relevant knowledge generation. We propose an alternative grouping of the patients based on a neural clustering approach, which generates homogeneous groups of patients with similar resource utilisation characteristics. Demographic information is used to generate the clusters, which reveal interesting differences in resource utilisation patterns. A detailed case study is presented to demonstrate the quality of knowledge generated by this process. The proposed approach can therefore be seen as an evidence-based predictive tool with high knowledge generation capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经聚类方法等资源分组为急性保健在澳大利亚
关于资源消耗和利用的知识在现代医疗环境中至关重要。为了有效地管理人力和物力资源,一种典型的方法是根据共同特征对患者进行分组。使用最广泛的方法是由病例组合供资公式驱动的,即根据诊断相关组(drg)对患者进行分类。虽然它具有临床意义,但我们的经验表明,DRG分组并不一定为相关知识的产生提供可靠的基础。我们提出了一种基于神经聚类方法的患者替代分组,该方法生成具有相似资源利用特征的同质患者组。人口统计信息用于生成集群,这些集群揭示了资源利用模式中有趣的差异。通过一个详细的案例研究来证明这个过程所产生的知识的质量。因此,所提出的方法可以被视为具有高知识生成能力的循证预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Healthcare chain workflow management by use of IT Exploiting soft systems methodology (SSM) and knowledge types to facilitate knowledge capture issues in a Web Site environment Nash strategies for load serving entities in dynamic energy multi-markets Global applications of collaborative technology Resource allocation in networks: a case study of the influence model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1