{"title":"Deep Convolutional Neural Network to Detect J-UNIWARD","authors":"Guanshuo Xu","doi":"10.1145/3082031.3083236","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical study on applying convolutional neural networks (CNNs) to detecting J-UNIWARD -- one of the most secure JPEG steganographic method. Experiments guiding the architectural design of the CNNs have been conducted on the JPEG compressed BOSSBase containing 10,000 covers of size 512×512. Results have verified that both the pooling method and the depth of the CNNs are critical for performance. Results have also proved that a 20-layer CNN, in general, outperforms the most sophisticated feature-based methods, but its advantage gradually diminishes on hard-to-detect cases. To show that the performance generalizes to large-scale databases and to different cover sizes, one experiment has been conducted on the CLS-LOC dataset of ImageNet containing more than one million covers cropped to unified size of 256×256. The proposed 20-layer CNN has cut the error achieved by a CNN recently proposed for large-scale JPEG steganalysis by 35%. Source code is available via GitHub: https://github.com/GuanshuoXu/deep_cnn_jpeg_steganalysis","PeriodicalId":431672,"journal":{"name":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3082031.3083236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178
Abstract
This paper presents an empirical study on applying convolutional neural networks (CNNs) to detecting J-UNIWARD -- one of the most secure JPEG steganographic method. Experiments guiding the architectural design of the CNNs have been conducted on the JPEG compressed BOSSBase containing 10,000 covers of size 512×512. Results have verified that both the pooling method and the depth of the CNNs are critical for performance. Results have also proved that a 20-layer CNN, in general, outperforms the most sophisticated feature-based methods, but its advantage gradually diminishes on hard-to-detect cases. To show that the performance generalizes to large-scale databases and to different cover sizes, one experiment has been conducted on the CLS-LOC dataset of ImageNet containing more than one million covers cropped to unified size of 256×256. The proposed 20-layer CNN has cut the error achieved by a CNN recently proposed for large-scale JPEG steganalysis by 35%. Source code is available via GitHub: https://github.com/GuanshuoXu/deep_cnn_jpeg_steganalysis