Abusayeed Saifullah, Dolvara Gunatilaka, P. Tiwari, M. Sha, Chenyang Lu, Bo Li, Chengjie Wu, Yixin Chen
{"title":"Schedulability Analysis under Graph Routing in WirelessHART Networks","authors":"Abusayeed Saifullah, Dolvara Gunatilaka, P. Tiwari, M. Sha, Chenyang Lu, Bo Li, Chengjie Wu, Yixin Chen","doi":"10.1109/RTSS.2015.23","DOIUrl":null,"url":null,"abstract":"Wireless sensor-actuator networks are gaining ground as the communication infrastructure for process monitoring and control. Industrial applications demand a high degree of reliability and real-time guarantees in communication. Because wireless communication is susceptible to transmission failures in industrial environments, industrial wireless standards such as WirelessHART adopt reliable graph routing to handle transmission failures through retransmissions and route diversity. While these mechanisms are critical for reliable communication, they introduce substantial challenges in analyzing the schedulability of real-time flows. This paper presents the first worst-case end-to-end delay analysis for periodic real-time flows under reliable graph routing. The proposed analysis can be used to quickly assess the schedulability of real-time flows with stringent requirements on both reliability and latency. We have evaluated our schedulability analysis against experimental results on a wireless testbed of 69 nodes as well as simulations. Both experimental results and simulations show that our delay bounds are safe and enable effective schedulability tests under reliable graph routing.","PeriodicalId":239882,"journal":{"name":"2015 IEEE Real-Time Systems Symposium","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Wireless sensor-actuator networks are gaining ground as the communication infrastructure for process monitoring and control. Industrial applications demand a high degree of reliability and real-time guarantees in communication. Because wireless communication is susceptible to transmission failures in industrial environments, industrial wireless standards such as WirelessHART adopt reliable graph routing to handle transmission failures through retransmissions and route diversity. While these mechanisms are critical for reliable communication, they introduce substantial challenges in analyzing the schedulability of real-time flows. This paper presents the first worst-case end-to-end delay analysis for periodic real-time flows under reliable graph routing. The proposed analysis can be used to quickly assess the schedulability of real-time flows with stringent requirements on both reliability and latency. We have evaluated our schedulability analysis against experimental results on a wireless testbed of 69 nodes as well as simulations. Both experimental results and simulations show that our delay bounds are safe and enable effective schedulability tests under reliable graph routing.