False positive reduction in lymph node detection by using convolutional neural network with multi-view input

Jiaqi Wang, Li Xu
{"title":"False positive reduction in lymph node detection by using convolutional neural network with multi-view input","authors":"Jiaqi Wang, Li Xu","doi":"10.1117/12.2535551","DOIUrl":null,"url":null,"abstract":"The presence of enlarged lymph nodes is a signal of malignant disease or infection. Lymph nodes detection plays an important role in clinical diagnostic tasks. Previous lymph nodes detection methods achieve high sensitivity at the cost of a high false positive rate. In this paper, we propose a method that helps reject false positives. Features are extracted separately from 2D CT slices by using a deep convolutional neural network with multi-view input. Separated feature layers can extract the most suitable features from each input slice individually. We validate the approach on a public dataset and improve the sensitivity by reducing the false positive rate.","PeriodicalId":384253,"journal":{"name":"International Symposium on Multispectral Image Processing and Pattern Recognition","volume":"11431 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Multispectral Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2535551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of enlarged lymph nodes is a signal of malignant disease or infection. Lymph nodes detection plays an important role in clinical diagnostic tasks. Previous lymph nodes detection methods achieve high sensitivity at the cost of a high false positive rate. In this paper, we propose a method that helps reject false positives. Features are extracted separately from 2D CT slices by using a deep convolutional neural network with multi-view input. Separated feature layers can extract the most suitable features from each input slice individually. We validate the approach on a public dataset and improve the sensitivity by reducing the false positive rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多视图输入的卷积神经网络减少淋巴结检测中的假阳性
淋巴结肿大是恶性疾病或感染的信号。淋巴结检测在临床诊断任务中起着重要作用。以前的淋巴结检测方法以高假阳性率为代价实现了高灵敏度。在本文中,我们提出了一种有助于拒绝误报的方法。采用多视图输入的深度卷积神经网络从二维CT切片中分别提取特征。分离的特征层可以分别从每个输入切片中提取最合适的特征。我们在公共数据集上验证了该方法,并通过降低误报率来提高灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image fusion for multimodality image via domain transfer and nonrigid transformation Dimensionality reduction of hyperspectral images based on subspace combination clustering and adaptive band selection Remote multi-object detection based on bounding box field Facial morphe via domain translation and FM2RLS Restoration of haze-free images using generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1