How Long Will It Take to Fix This Bug?

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller
{"title":"How Long Will It Take to Fix This Bug?","authors":"Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller","doi":"10.1109/MSR.2007.13","DOIUrl":null,"url":null,"abstract":"Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.","PeriodicalId":201749,"journal":{"name":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"392","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 392

Abstract

Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修复这个Bug需要多长时间?
长期以来,预测软件问题的时间和精力一直是一项艰巨的任务。我们提出了一种自动预测修复工作的方法,即修复问题所花费的人-小时。我们的技术利用了现有的问题跟踪系统:给定一个新的问题报告,我们使用Lucene框架来搜索类似的、早期的报告,并使用它们的平均时间作为预测。因此,我们的方法允许早期的工作量评估,帮助分配问题和调度稳定的发布。我们使用来自JBoss项目的工作数据来评估我们的方法。给定足够数量的问题报告,我们的自动预测接近实际工作;对于bug问题,我们只差了一个小时,比天真的预测差了四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local and Global Recency Weighting Approach to Bug Prediction Using Software Distributions to Understand the Relationship among Free and Open Source Software Projects Prioritizing Warning Categories by Analyzing Software History Studying Versioning Information to Understand Inheritance Hierarchy Changes Detecting Patch Submission and Acceptance in OSS Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1