Reconstructing non-point sources of diffusion fields using sensor measurements

John Murray-Bruce, P. Dragotti
{"title":"Reconstructing non-point sources of diffusion fields using sensor measurements","authors":"John Murray-Bruce, P. Dragotti","doi":"10.1109/ICASSP.2016.7472429","DOIUrl":null,"url":null,"abstract":"We present a framework for estimating non-localized sources of diffusion fields using spatiotemporal measurements of the field. Specifically in this contribution, we consider two non-localized source types: straight line and polygonal sources and assume that the induced field is monitored using a sensor network. Given the sensor measurements, we demonstrate, for each non-point source parameterization, how to reduce the source estimation problem to a system governed by a power series expansion that can then be efficiently solved using Prony's method, in order to reconstruct the source. We then evaluate the proposed algorithms by performing some numerical simulations using both noiseless and noisy spatiotemporal sensor measurements of the field.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a framework for estimating non-localized sources of diffusion fields using spatiotemporal measurements of the field. Specifically in this contribution, we consider two non-localized source types: straight line and polygonal sources and assume that the induced field is monitored using a sensor network. Given the sensor measurements, we demonstrate, for each non-point source parameterization, how to reduce the source estimation problem to a system governed by a power series expansion that can then be efficiently solved using Prony's method, in order to reconstruct the source. We then evaluate the proposed algorithms by performing some numerical simulations using both noiseless and noisy spatiotemporal sensor measurements of the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用传感器测量重建扩散场的非点源
我们提出了一个框架,用于估计非局域源的扩散场使用的场的时空测量。具体来说,在本文中,我们考虑了两种非局域源类型:直线源和多边形源,并假设感应场是使用传感器网络监测的。给定传感器测量,我们演示了,对于每个非点源参数化,如何将源估计问题减少到一个由幂级数展开控制的系统,然后可以使用proony的方法有效地解决,以便重建源。然后,我们通过使用现场的无噪声和有噪声时空传感器测量进行一些数值模拟来评估所提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1