Modeling the RITS-6 transmission line

N. Bruner, C. Mostrom, D. Rose, D. Welch, V. Bailey, D. Johnson, B. Oliver
{"title":"Modeling the RITS-6 transmission line","authors":"N. Bruner, C. Mostrom, D. Rose, D. Welch, V. Bailey, D. Johnson, B. Oliver","doi":"10.1109/PPPS.2007.4651962","DOIUrl":null,"url":null,"abstract":"Sandia National Laboratories’ Radiographic Integrated Test Stand (RITS-6) is a six-cell inductive voltage adder accelerator designed to produce currents of 186 kA at 7.8 MV in 70 ns in its low-impedance configuration. The six inductive-adder cells are connected in series to a coaxial magnetically insulated transmission line. Each cell has a single point feed to an azimuthal transmission line which distributes the pulse around the cell bore. To understand the extent to which power is distributed symmetrically around the coaxial transmission line and its effect on electron power flow downstream, particle-in-cell simulations were used to model the entire RITS-6 transmission line in 3D from pulse forming circuit to the diode load. Simulation results show electron flow current to be asymmetric by 16% at the exit to the sixth cell, but 3% or less at diagnostic positions near the load. Magnetic insulation in the trans-mission line does not appear to be impacted by the asymmetry, though flow impedance is not uniform axially.","PeriodicalId":275106,"journal":{"name":"2007 16th IEEE International Pulsed Power Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 16th IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS.2007.4651962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sandia National Laboratories’ Radiographic Integrated Test Stand (RITS-6) is a six-cell inductive voltage adder accelerator designed to produce currents of 186 kA at 7.8 MV in 70 ns in its low-impedance configuration. The six inductive-adder cells are connected in series to a coaxial magnetically insulated transmission line. Each cell has a single point feed to an azimuthal transmission line which distributes the pulse around the cell bore. To understand the extent to which power is distributed symmetrically around the coaxial transmission line and its effect on electron power flow downstream, particle-in-cell simulations were used to model the entire RITS-6 transmission line in 3D from pulse forming circuit to the diode load. Simulation results show electron flow current to be asymmetric by 16% at the exit to the sixth cell, but 3% or less at diagnostic positions near the load. Magnetic insulation in the trans-mission line does not appear to be impacted by the asymmetry, though flow impedance is not uniform axially.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RITS-6传输线建模
桑迪亚国家实验室的射线照相综合测试台(RITS-6)是一种六单元电感电压加法加速器,在其低阻抗配置下,可在70 ns内产生7.8 MV、186 kA的电流。六个电感加法器单元串联连接到同轴磁绝缘传输线上。每个小区有一个单点馈电到沿小区孔分布脉冲的方位传输线。为了了解功率在同轴传输线周围的对称分布程度及其对下游电子功率流的影响,我们使用了粒子池模拟方法对从脉冲形成电路到二极管负载的整个RITS-6传输线进行了三维建模。仿真结果表明,在第6个电池出口处的电子流不对称率为16%,而在靠近负载的诊断位置的电子流不对称率为3%或更低。传输线中的磁绝缘不受不对称性的影响,但流动阻抗在轴向上并不均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dissipative instability under weak beam-plasma coupling Inductive heating of materials for the study of high-temperature mechanical properties. Application of a self-breakdown hydrogen spark gap switch on high power pulse modulator Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field Vertical dust particle chains - mass and charge measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1