A hybrid of Information gain and a Coati Optimization Algorithm for gene selection in microarray gene expression data classification.

Sarah Osama, A. Ali, Hassan Shaban
{"title":"A hybrid of Information gain and a Coati Optimization Algorithm for gene selection in microarray gene expression data classification.","authors":"Sarah Osama, A. Ali, Hassan Shaban","doi":"10.21608/kjis.2023.216661.1013","DOIUrl":null,"url":null,"abstract":"Gene expression data has become an essen2al tool for cancer classifica2on because it provides substan2al insights into the underlying mechanisms of cancer progression. However, the high-dimensional nature of microarray gene expression data presents a significant challenge. This paper introduces a new method called IG-COA, which combines Informa2on Gain (IG) approach and Coa2 Op2miza2on Algorithm (COA), to iden2fy the biomarkers genes. COA is a recent algorithm that has not been previously examined for feature or gene selec2on, to the best of our knowledge. Firstly, the IG method is used because using COA directly on microarray datasets is ineffec2ve and can make it challenging to train a classifier accurately. Secondly, the COA algorithm is u2lized to select the op2mal subset of genes from the previously selected ones. The effec2veness of the suggested IG-COA method with a Support Vector Machine is tested on several microarray gene expression datasets, and it exceeds other state-of-the-art methods.","PeriodicalId":115907,"journal":{"name":"Kafrelsheikh Journal of Information Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kafrelsheikh Journal of Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/kjis.2023.216661.1013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gene expression data has become an essen2al tool for cancer classifica2on because it provides substan2al insights into the underlying mechanisms of cancer progression. However, the high-dimensional nature of microarray gene expression data presents a significant challenge. This paper introduces a new method called IG-COA, which combines Informa2on Gain (IG) approach and Coa2 Op2miza2on Algorithm (COA), to iden2fy the biomarkers genes. COA is a recent algorithm that has not been previously examined for feature or gene selec2on, to the best of our knowledge. Firstly, the IG method is used because using COA directly on microarray datasets is ineffec2ve and can make it challenging to train a classifier accurately. Secondly, the COA algorithm is u2lized to select the op2mal subset of genes from the previously selected ones. The effec2veness of the suggested IG-COA method with a Support Vector Machine is tested on several microarray gene expression datasets, and it exceeds other state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息增益和Coati优化算法的基因选择微阵列基因表达数据分类。
基因表达数据已经成为癌症分类的重要工具,因为它为癌症进展的潜在机制提供了实质性的见解。然而,微阵列基因表达数据的高维性提出了一个重大挑战。本文介绍了一种结合Informa2on Gain (IG)法和Coa2 Op2miza2on算法(COA)的生物标记基因鉴定新方法IG-COA。据我们所知,COA是一种最近的算法,以前还没有对特征或基因选择进行过研究。首先,使用IG方法是因为直接在微阵列数据集上使用COA是无效的,并且会给准确训练分类器带来挑战。其次,利用COA算法从先前选择的基因中选择最优基因子集;基于支持向量机的igg - coa方法的有效性在多个微阵列基因表达数据集上进行了测试,并且超过了其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anemia Diagnosis And Prediction Based On Machine Learning Chronic Kidney Disease Classification Using ML Algorithms Cost-Efficient Method for Detecting and Mitigating DDOS Attacks in SDN Based Networks Decision Making in an Information System Via Pawlak’s Rough Approximation The classification of mushroom using ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1