Infinite Hidden Markov Models and ISA Features for Unusual-Event Detection in Video

Iulian Pruteanu-Malinici, L. Carin
{"title":"Infinite Hidden Markov Models and ISA Features for Unusual-Event Detection in Video","authors":"Iulian Pruteanu-Malinici, L. Carin","doi":"10.1109/ICIP.2007.4379784","DOIUrl":null,"url":null,"abstract":"We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using \"normal\"/\"typical\" video data. The iHMM automatically determines the proper number of HMM states, and it retains a full posterior density function on all model parameters. Anomalies (unusual events) are detected subsequently if a low likelihood is observed when associated sequential features are submitted to the trained iHMM. A hierarchical Dirichlet process (HDP) framework is employed in the formulation of the iHMM. The evaluation of posterior distributions for the iHMM is achieved in two ways: via MCMC and using a variational Bayes (VB) formulation.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using "normal"/"typical" video data. The iHMM automatically determines the proper number of HMM states, and it retains a full posterior density function on all model parameters. Anomalies (unusual events) are detected subsequently if a low likelihood is observed when associated sequential features are submitted to the trained iHMM. A hierarchical Dirichlet process (HDP) framework is employed in the formulation of the iHMM. The evaluation of posterior distributions for the iHMM is achieved in two ways: via MCMC and using a variational Bayes (VB) formulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频异常事件检测的无限隐马尔可夫模型和ISA特征
我们解决了视频序列中异常事件检测的问题。使用不变子空间分析(ISA)从视频中提取特征,并通过使用“正常”/“典型”视频数据训练的无限隐马尔可夫模型(iHMM)对这些特征的时间演化特性进行建模。iHMM自动确定HMM状态的适当数量,并对所有模型参数保留完整的后验密度函数。当相关的序列特征提交给训练后的iHMM时,如果观察到低可能性,则随后检测到异常(异常事件)。采用层次狄利克雷过程(HDP)框架构建iHMM。对iHMM的后验分布的评估有两种方式:通过MCMC和使用变分贝叶斯(VB)公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1