Diagnosing Machine Learning Pipelines with Fine-grained Lineage

Zhao Zhang, Evan R. Sparks, M. Franklin
{"title":"Diagnosing Machine Learning Pipelines with Fine-grained Lineage","authors":"Zhao Zhang, Evan R. Sparks, M. Franklin","doi":"10.1145/3078597.3078603","DOIUrl":null,"url":null,"abstract":"We present the Hippo system to enable the diagnosis of distributed machine learning (ML) pipelines by leveraging fine-grained data lineage. Hippo exposes a concise yet powerful API, derived from primitive lineage types, to capture fine-grained data lineage for each data transformation. It records the input datasets, the output datasets and the cell-level mapping between them. It also collects sufficient information that is needed to reproduce the computation. Hippo efficiently enables common ML diagnosis operations such as code debugging, result analysis, data anomaly removal, and computation replay. By exploiting the metadata separation and high-order function encoding strategies, we observe an O(10^3)x total improvement in lineage storage efficiency vs. the baseline of cell-wise mapping recording while maintaining the lineage integrity. Hippo can answer the real use case lineage queries within a few seconds, which is low enough to enable interactive diagnosis of ML pipelines.","PeriodicalId":436194,"journal":{"name":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078597.3078603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present the Hippo system to enable the diagnosis of distributed machine learning (ML) pipelines by leveraging fine-grained data lineage. Hippo exposes a concise yet powerful API, derived from primitive lineage types, to capture fine-grained data lineage for each data transformation. It records the input datasets, the output datasets and the cell-level mapping between them. It also collects sufficient information that is needed to reproduce the computation. Hippo efficiently enables common ML diagnosis operations such as code debugging, result analysis, data anomaly removal, and computation replay. By exploiting the metadata separation and high-order function encoding strategies, we observe an O(10^3)x total improvement in lineage storage efficiency vs. the baseline of cell-wise mapping recording while maintaining the lineage integrity. Hippo can answer the real use case lineage queries within a few seconds, which is low enough to enable interactive diagnosis of ML pipelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用细粒度谱系诊断机器学习管道
我们提出了Hippo系统,通过利用细粒度数据谱系来实现分布式机器学习(ML)管道的诊断。Hippo公开了一个简洁但功能强大的API,它派生自原始沿袭类型,用于为每个数据转换捕获细粒度的数据沿袭。它记录输入数据集、输出数据集以及它们之间的单元级映射。它还收集再现计算所需的足够信息。Hippo有效地支持常见的ML诊断操作,如代码调试、结果分析、数据异常去除和计算回放。通过利用元数据分离和高阶函数编码策略,我们观察到在保持谱系完整性的同时,谱系存储效率比基于细胞的映射记录的基线提高了0(10^3)倍。Hippo可以在几秒钟内回答真实的用例谱系查询,这足够低,可以实现ML管道的交互式诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning in Cancer and Infectious Disease: Novel Driver Problems for Future HPC Architecture LetGo: A Lightweight Continuous Framework for HPC Applications Under Failures Explaining Wide Area Data Transfer Performance IOGP: An Incremental Online Graph Partitioning Algorithm for Distributed Graph Databases Better Safe than Sorry: Grappling with Failures of In-Memory Data Analytics Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1