Exploiting Entity Linking in Queries for Entity Retrieval

Faegheh Hasibi, K. Balog, Svein Erik Bratsberg
{"title":"Exploiting Entity Linking in Queries for Entity Retrieval","authors":"Faegheh Hasibi, K. Balog, Svein Erik Bratsberg","doi":"10.1145/2970398.2970406","DOIUrl":null,"url":null,"abstract":"The premise of entity retrieval is to better answer search queries by returning specific entities instead of documents. Many queries mention particular entities; recognizing and linking them to the corresponding entry in a knowledge base is known as the task of entity linking in queries. In this paper we make a first attempt at bringing together these two, i.e., leveraging entity annotations of queries in the entity retrieval model. We introduce a new probabilistic component and show how it can be applied on top of any term-based entity retrieval model that can be emulated in the Markov Random Field framework, including language models, sequential dependence models, as well as their fielded variations. Using a standard entity retrieval test collection, we show that our extension brings consistent improvements over all baseline methods, including the current state-of-the-art. We further show that our extension is robust against parameter settings.","PeriodicalId":443715,"journal":{"name":"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2970398.2970406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

The premise of entity retrieval is to better answer search queries by returning specific entities instead of documents. Many queries mention particular entities; recognizing and linking them to the corresponding entry in a knowledge base is known as the task of entity linking in queries. In this paper we make a first attempt at bringing together these two, i.e., leveraging entity annotations of queries in the entity retrieval model. We introduce a new probabilistic component and show how it can be applied on top of any term-based entity retrieval model that can be emulated in the Markov Random Field framework, including language models, sequential dependence models, as well as their fielded variations. Using a standard entity retrieval test collection, we show that our extension brings consistent improvements over all baseline methods, including the current state-of-the-art. We further show that our extension is robust against parameter settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用实体链接查询实体检索
实体检索的前提是通过返回特定实体而不是文档来更好地回答搜索查询。许多查询提到了特定的实体;识别它们并将它们链接到知识库中的相应条目称为查询中的实体链接任务。在本文中,我们首次尝试将这两者结合起来,即在实体检索模型中利用查询的实体注释。我们引入了一个新的概率组件,并展示了如何将其应用于任何基于术语的实体检索模型之上,这些模型可以在马尔可夫随机场框架中进行模拟,包括语言模型、顺序依赖模型以及它们的领域变体。使用标准的实体检索测试集合,我们展示了我们的扩展在所有基线方法上带来了一致的改进,包括当前最先进的方法。我们进一步证明了我们的扩展对参数设置具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple and Effective Approach to Score Standardisation Understanding the Message of Images with Knowledge Base Traversals A Topical Approach to Retrievability Bias Estimation Efficient and Effective Higher Order Proximity Modeling Cross-Language Microblog Retrieval using Latent Semantic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1