Brief Announcement: Automatic Log Enhancement for Fault Diagnosis

Tong Jia, Ying Li, Zhonghai Wu
{"title":"Brief Announcement: Automatic Log Enhancement for Fault Diagnosis","authors":"Tong Jia, Ying Li, Zhonghai Wu","doi":"10.1145/3212734.3212784","DOIUrl":null,"url":null,"abstract":"When systems fail, logs are frequently the only evidence available for underlying fault diagnosis. Consequently, the quality of logs-how well system faults can be reflected by these log messages, is of significant importance. To improve the quality of logs, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault time. We further evaluate our approach with three popular open source projects. Results show that it can significantly improve over 50% accuracy of automatic fault diagnosis on average.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When systems fail, logs are frequently the only evidence available for underlying fault diagnosis. Consequently, the quality of logs-how well system faults can be reflected by these log messages, is of significant importance. To improve the quality of logs, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault time. We further evaluate our approach with three popular open source projects. Results show that it can significantly improve over 50% accuracy of automatic fault diagnosis on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简要公告:自动日志增强,用于故障诊断
当系统发生故障时,日志通常是底层故障诊断的唯一可用证据。因此,日志的质量(这些日志消息能在多大程度上反映系统故障)非常重要。为了提高日志质量,我们提出了一种新的日志增强方法,该方法在系统故障时自动识别反映异常行为的日志点。我们用三个流行的开源项目进一步评估我们的方法。结果表明,该方法可显著提高故障自动诊断准确率,平均提高50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tutorial: Consistency Choices in Modern Distributed Systems Locking Timestamps versus Locking Objects Recoverable Mutual Exclusion Under System-Wide Failures Nesting-Safe Recoverable Linearizability: Modular Constructions for Non-Volatile Memory Brief Announcement: Beeping a Time-Optimal Leader Election
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1