GNN-GM: A Proactive Caching Scheme for Named Data Networking

Jiacheng Hou, Haoye Lu, A. Nayak
{"title":"GNN-GM: A Proactive Caching Scheme for Named Data Networking","authors":"Jiacheng Hou, Haoye Lu, A. Nayak","doi":"10.1109/ICCWorkshops53468.2022.9882153","DOIUrl":null,"url":null,"abstract":"As people spend more time watching movies and sharing videos online, it is crucial to provide users with a satisfactory quality of experience (QoE). With the help of the in-network caching feature in named data networking (NDN), our paper aims to improve user experience through caching. We propose a graph neural network-gain maximization (GNN-GM) cache placement algorithm. First, we use a GNN model to predict users’ ratings of unviewed videos. Second, we consider the total predicted rating of a video as the gain of caching the video. Third, we propose a cache placement algorithm to maximize the caching gains and proactively cache videos. We also design a caching replacement strategy based on the gain of caching the video. We utilize a real-world dataset to evaluate our caching strategy. Compared to state-of-the-art caching approaches, experimental results show that our caching policy improves cache hit rate by 25%, reduces latency by 5%, and reduces server load by 7%.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops53468.2022.9882153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As people spend more time watching movies and sharing videos online, it is crucial to provide users with a satisfactory quality of experience (QoE). With the help of the in-network caching feature in named data networking (NDN), our paper aims to improve user experience through caching. We propose a graph neural network-gain maximization (GNN-GM) cache placement algorithm. First, we use a GNN model to predict users’ ratings of unviewed videos. Second, we consider the total predicted rating of a video as the gain of caching the video. Third, we propose a cache placement algorithm to maximize the caching gains and proactively cache videos. We also design a caching replacement strategy based on the gain of caching the video. We utilize a real-world dataset to evaluate our caching strategy. Compared to state-of-the-art caching approaches, experimental results show that our caching policy improves cache hit rate by 25%, reduces latency by 5%, and reduces server load by 7%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GNN-GM:命名数据网络的主动缓存方案
随着人们花更多的时间在线观看电影和分享视频,为用户提供满意的体验质量(QoE)至关重要。本文旨在借助命名数据网络(NDN)的网络内缓存特性,通过缓存来改善用户体验。我们提出了一种图神经网络增益最大化(GNN-GM)缓存放置算法。首先,我们使用GNN模型来预测用户对未观看视频的评分。其次,我们将视频的总预测评分作为缓存视频的增益。第三,我们提出了一种缓存放置算法,以最大化缓存收益并主动缓存视频。我们还设计了一种基于视频缓存增益的缓存替换策略。我们利用一个真实的数据集来评估我们的缓存策略。与最先进的缓存方法相比,实验结果表明,我们的缓存策略将缓存命中率提高了25%,延迟减少了5%,服务器负载减少了7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis of a Bistatic Joint Sensing and Communication System An Upgraded Object Detection Model for Enhanced Perception and Decision Making in Autonomous Vehicles Demo: Low-power Communications Based on RIS and AI for 6G Demo: Deterministic Radio Propagation Simulation for Integrated Communication Systems in Multimodal Intelligent Transportation Scenarios Energy Efficient Distributed Learning in Integrated Fog-Cloud Computing Enabled IoT Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1