Deep SVBRDF Estimation on Real Materials

L. Asselin, D. Laurendeau, Jean-François Lalonde
{"title":"Deep SVBRDF Estimation on Real Materials","authors":"L. Asselin, D. Laurendeau, Jean-François Lalonde","doi":"10.1109/3DV50981.2020.00126","DOIUrl":null,"url":null,"abstract":"Recent work has demonstrated that deep learning approaches can successfully be used to recover accurate estimates of the spatially-varying BRDF (SVBRDF) of a surface from as little as a single image. Closer inspection reveals, however, that most approaches in the literature are trained purely on synthetic data, which, while diverse and realistic, is often not representative of the richness of the real world. In this paper, we show that training such networks exclusively on synthetic data is insufficient to achieve adequate results when tested on real data. Our analysis leverages a new dataset of real materials obtained with a novel portable multi-light capture apparatus. Through an extensive series of experiments and with the use of a novel deep learning architecture, we explore two strategies for improving results on real data: finetuning, and a per-material optimization procedure. We show that adapting network weights to real data is of critical importance, resulting in an approach which significantly outperforms previous methods for SVBRDF estimation on real materials. Dataset and code are available at https://lvsn.github.io/ real-svbrdf.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Recent work has demonstrated that deep learning approaches can successfully be used to recover accurate estimates of the spatially-varying BRDF (SVBRDF) of a surface from as little as a single image. Closer inspection reveals, however, that most approaches in the literature are trained purely on synthetic data, which, while diverse and realistic, is often not representative of the richness of the real world. In this paper, we show that training such networks exclusively on synthetic data is insufficient to achieve adequate results when tested on real data. Our analysis leverages a new dataset of real materials obtained with a novel portable multi-light capture apparatus. Through an extensive series of experiments and with the use of a novel deep learning architecture, we explore two strategies for improving results on real data: finetuning, and a per-material optimization procedure. We show that adapting network weights to real data is of critical importance, resulting in an approach which significantly outperforms previous methods for SVBRDF estimation on real materials. Dataset and code are available at https://lvsn.github.io/ real-svbrdf.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真实材料的深度SVBRDF估计
最近的研究表明,深度学习方法可以成功地从单个图像中恢复对表面空间变化BRDF (SVBRDF)的准确估计。然而,仔细观察就会发现,文献中的大多数方法都是纯粹基于合成数据进行训练的,这些数据虽然多样且真实,但往往不能代表现实世界的丰富性。在本文中,我们表明,当在真实数据上进行测试时,仅在合成数据上训练此类网络不足以获得足够的结果。我们的分析利用了一种新型便携式多光捕获装置获得的真实材料的新数据集。通过一系列广泛的实验和使用新颖的深度学习架构,我们探索了两种改进真实数据结果的策略:微调和逐材料优化过程。我们表明,将网络权重适应于真实数据是至关重要的,这使得该方法显著优于以前在真实材料上进行SVBRDF估计的方法。数据集和代码可从https://lvsn.github.io/ real-svbrdf获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1