Stress partitioning and effective behavior of N-phase laminates in anisotropic elasticity from a fast explicit method

T. Richeton
{"title":"Stress partitioning and effective behavior of N-phase laminates in anisotropic elasticity from a fast explicit method","authors":"T. Richeton","doi":"10.46298/jtcam.8506","DOIUrl":null,"url":null,"abstract":"In this work, a fast explicit method, easy to implement numerically, is proposed in order to compute the effective behavior and the distribution of stresses in a general N-phase laminate made of parallel, planar and perfectly bonded interfaces. The solutions are exact for a homogeneous far-field loading and work for an arbitrary number of phases, a general linear anisotropic elasticity, as well as different uniform thermal and plastic strains in the phases. A simple direct analytical formula is also derived to compute the stress in a given phase once the effective behavior of the laminate is known. Moreover, the correctness of the proposed method is checked by comparisons with finite element simulation results on a same boundary value problem, showing excellent agreements. An application of the method is performed for a near-β titanium alloy with elongated grains, by comparing the level of internal stresses for different elastic loadings within a N-phase laminate made of 100,000 orientations and a 2-phase laminate of equal volume fraction with maximal elastic contrast. Interestingly, the maximum von Mises stress of the 2-phase laminate is always the lowest, which is explained by a volume fraction effect. Finally, comparisons with elastic self-consistent models considering oblate spheroidal grains of different aspect ratios are performed.","PeriodicalId":115014,"journal":{"name":"Journal of Theoretical, Computational and Applied Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical, Computational and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jtcam.8506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, a fast explicit method, easy to implement numerically, is proposed in order to compute the effective behavior and the distribution of stresses in a general N-phase laminate made of parallel, planar and perfectly bonded interfaces. The solutions are exact for a homogeneous far-field loading and work for an arbitrary number of phases, a general linear anisotropic elasticity, as well as different uniform thermal and plastic strains in the phases. A simple direct analytical formula is also derived to compute the stress in a given phase once the effective behavior of the laminate is known. Moreover, the correctness of the proposed method is checked by comparisons with finite element simulation results on a same boundary value problem, showing excellent agreements. An application of the method is performed for a near-β titanium alloy with elongated grains, by comparing the level of internal stresses for different elastic loadings within a N-phase laminate made of 100,000 orientations and a 2-phase laminate of equal volume fraction with maximal elastic contrast. Interestingly, the maximum von Mises stress of the 2-phase laminate is always the lowest, which is explained by a volume fraction effect. Finally, comparisons with elastic self-consistent models considering oblate spheroidal grains of different aspect ratios are performed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于快速显式方法的n相层合板各向异性弹性应力分配及有效行为
本文提出了一种易于数值实现的快速显式方法,用于计算由平行、平面和完美结合界面组成的普通n相层合板的有效行为和应力分布。对于均匀远场载荷和任意数量的相、一般的线性各向异性弹性以及相中不同的均匀热应变和塑性应变,解是准确的。当层合板的有效性能已知时,还推导出一个简单的直接解析公式来计算给定相的应力。通过与同一边值问题的有限元仿真结果的比较,验证了所提方法的正确性。将该方法应用于具有细长晶粒的近β钛合金,通过比较由100,000个取向组成的n相层压板和具有最大弹性对比的等体积分数的2相层压板在不同弹性载荷下的内应力水平。有趣的是,两相层合板的最大von Mises应力总是最低的,这可以用体积分数效应来解释。最后,与考虑不同纵横比的扁球颗粒弹性自洽模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack branching at low tip speeds: spilling the T The average conformation tensor of inter-atomic bonds as an alternative state variable to the strain tensor: definition and first application ś the case of nanoelasticity Reduced order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds Optimization of a dynamic absorber with nonlinear stiffness and damping for the vibration control of a floating offshore wind turbine toy model Plasticity and ductility of an anisotropic recrystallized AA2198 Al-Cu-Li alloy in T3 and T8 conditions during proportional and non-proportional loading paths: simulations and experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1