Fingerprint Presentation Attack Detection by Learning in Frequency Domain

Wentian Zhang, Haozhe Liu, Feng Liu
{"title":"Fingerprint Presentation Attack Detection by Learning in Frequency Domain","authors":"Wentian Zhang, Haozhe Liu, Feng Liu","doi":"10.1109/PRML52754.2021.9520694","DOIUrl":null,"url":null,"abstract":"The anti-spoofing ability is of great importance to the development of automated fingerprint recognition systems. This paper proposes a novel Optical Coherence Technology (OCT)-based fingerprint Presentation Attack Detection (PAD) method from frequency domain. Unlike previous approaches, we design an Frequency Feature Disentangling (FFD) model to decompose OCT-based fingerprint B-scans into four different frequency subbands like Discrete Wavelet Transform (DWT). Through such disentangling, information superimposed in original image in spatial domain (e.g. discriminative PAD feature, invalid and redundant feature) can be separated respectively. We then let it learn different frequency codes to form their corresponding latent codes. Spoofness score which is used to distinguish PAs from bonafides is finally designed based on the latent codes. The experimental results, evaluated on the dataset with 93,200 bonafide B-scans from 137 fingers and 48,400 B-scans from 121 PAs, show that our method can remove some useless interference information superimposed in spatial domain by disentangling into frequency domain for effective PAD. In the instance-wise case, the proposed method achieves a minimum error (Err.) of 0.67%, which outperforms other compared methods and improves 81.89% than the best one.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The anti-spoofing ability is of great importance to the development of automated fingerprint recognition systems. This paper proposes a novel Optical Coherence Technology (OCT)-based fingerprint Presentation Attack Detection (PAD) method from frequency domain. Unlike previous approaches, we design an Frequency Feature Disentangling (FFD) model to decompose OCT-based fingerprint B-scans into four different frequency subbands like Discrete Wavelet Transform (DWT). Through such disentangling, information superimposed in original image in spatial domain (e.g. discriminative PAD feature, invalid and redundant feature) can be separated respectively. We then let it learn different frequency codes to form their corresponding latent codes. Spoofness score which is used to distinguish PAs from bonafides is finally designed based on the latent codes. The experimental results, evaluated on the dataset with 93,200 bonafide B-scans from 137 fingers and 48,400 B-scans from 121 PAs, show that our method can remove some useless interference information superimposed in spatial domain by disentangling into frequency domain for effective PAD. In the instance-wise case, the proposed method achieves a minimum error (Err.) of 0.67%, which outperforms other compared methods and improves 81.89% than the best one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频域学习的指纹表示攻击检测
抗欺骗能力对自动指纹识别系统的发展至关重要。提出了一种基于光学相干技术(OCT)的指纹呈现攻击检测方法。与以前的方法不同,我们设计了一个频率特征解纠缠(FFD)模型,将基于oct的指纹b扫描分解为四个不同的频率子带,如离散小波变换(DWT)。通过这种去纠缠,可以分别分离出在空间域中叠加在原始图像上的信息(如判别性PAD特征、无效和冗余特征)。然后让它学习不同的频率码,形成相应的潜码。最后基于潜码设计了用于区分真伪的欺骗评分。实验结果表明,该方法可以通过解纠缠到频域,去除空间域叠加的无用干扰信息,从而实现有效的PAD。在实例方面,该方法的最小误差(Err.)为0.67%,优于其他比较方法,比最佳方法提高了81.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Robot for Cleaning Garbage Based on OpenCV Research on Tibetan-Chinese Machine Translation Based on Multi-Strategy Processing A Survey of Object Detection Based on CNN and Transformer A Review of Segmentation and Classification for Retinal Optical Coherence Tomography Images Research on the Methods of Speech Synthesis Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1