Sonali Das, A. Kundu, S. M. Hossain, H. Saha, S. Datta
{"title":"Effect of size on the scattering properties of silica nanoparticles","authors":"Sonali Das, A. Kundu, S. M. Hossain, H. Saha, S. Datta","doi":"10.1109/ICEMELEC.2014.7151131","DOIUrl":null,"url":null,"abstract":"The effect of size on the scattering properties of silica nanoparticles on glass has been presented here. Silica nanoparticles of two different sizes (~50 nm and ~300 nm diameter) have been synthesized by a modified Stober technique and applied by spin coating on glass surface. Scattering properties of the nanoparticles have been studied experimentally. It is seen that larger nanoparticles have a higher scattering efficiency, which validates the simulation results obtained using Lumerical FDTD Solutions. As silica nanoparticles are essentially lossless in the AM1.5G solar spectrum, they will be (for solar cell applications) an alternative, as scatterers, to lossy metal nanoparticles. Their scattering efficiency further enhances upon them embedding in a medium. Two possible configurations of integrating silica nanoparticles with amorphous silicon solar cells are also presented.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The effect of size on the scattering properties of silica nanoparticles on glass has been presented here. Silica nanoparticles of two different sizes (~50 nm and ~300 nm diameter) have been synthesized by a modified Stober technique and applied by spin coating on glass surface. Scattering properties of the nanoparticles have been studied experimentally. It is seen that larger nanoparticles have a higher scattering efficiency, which validates the simulation results obtained using Lumerical FDTD Solutions. As silica nanoparticles are essentially lossless in the AM1.5G solar spectrum, they will be (for solar cell applications) an alternative, as scatterers, to lossy metal nanoparticles. Their scattering efficiency further enhances upon them embedding in a medium. Two possible configurations of integrating silica nanoparticles with amorphous silicon solar cells are also presented.