Relational graph labelling using learning techniques and Markov random fields

D. Rivière, J. F. Mangin, Jean-Marc Martinez, F. Tupin, D. Papadopoulos-Orfanos, V. Frouin
{"title":"Relational graph labelling using learning techniques and Markov random fields","authors":"D. Rivière, J. F. Mangin, Jean-Marc Martinez, F. Tupin, D. Papadopoulos-Orfanos, V. Frouin","doi":"10.1109/ICPR.2002.1048265","DOIUrl":null,"url":null,"abstract":"This paper introduces an approach for handling complex labelling problems driven by local constraints. The purpose is illustrated by two applications: detection of the road network on radar satellite images, and recognition of the cortical sulci on MRI images. Features must be initially extracted from the data to build a \"feature graph\" with structural relations. The goal is to endow each feature with a label representing either a specific object (recognition), or a class of objects (detection). Some contextual constraints have to be respected during this labelling. They are modelled by Markovian potentials assigned to the labellings of \"feature clusters\". The solution of the labelling problem is the minimum of the energy defined by the sum of the local potentials. This paper develops a method for learning these local potentials using \"congregation\" of neural networks and supervised learning.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an approach for handling complex labelling problems driven by local constraints. The purpose is illustrated by two applications: detection of the road network on radar satellite images, and recognition of the cortical sulci on MRI images. Features must be initially extracted from the data to build a "feature graph" with structural relations. The goal is to endow each feature with a label representing either a specific object (recognition), or a class of objects (detection). Some contextual constraints have to be respected during this labelling. They are modelled by Markovian potentials assigned to the labellings of "feature clusters". The solution of the labelling problem is the minimum of the energy defined by the sum of the local potentials. This paper develops a method for learning these local potentials using "congregation" of neural networks and supervised learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用学习技术和马尔可夫随机场的关系图标记
本文介绍了一种处理由局部约束驱动的复杂标签问题的方法。目的是通过两个应用来说明:雷达卫星图像上的道路网络检测和MRI图像上的皮质沟识别。首先必须从数据中提取特征,以构建具有结构关系的“特征图”。目标是为每个特征赋予一个标签,代表一个特定的对象(识别)或一类对象(检测)。在这个标签过程中,必须尊重一些上下文限制。它们通过分配给“特征簇”标签的马尔可夫电位来建模。标记问题的解是由局部势的和定义的能量的最小值。本文提出了一种利用神经网络的“聚集”和监督学习来学习这些局部电位的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1