Robust identification of quadrocopter model for control purposes

K. Arminski, T. Zubowicz
{"title":"Robust identification of quadrocopter model for control purposes","authors":"K. Arminski, T. Zubowicz","doi":"10.1109/MMAR.2017.8046849","DOIUrl":null,"url":null,"abstract":"The paper addresses a problem of quadrotor unmanned aerial vehicle (so-called X4-flyer or quadrocopter) utility model identification for control design purposes. To that goal the quadrotor model is assumed to be composed of two abstracted subsystems, namely a rigid body (plant) and four motors equipped with blades (actuators). The model of the former is acquired based on a well-established dynamic equations of motion while the latter is to be identified as a static relationship from laboratory experiments data. Moreover, the actuator model is to account for the on-flight battery power source voltage drop effects. The actuator parameter identification algorithm is kept in a set-membership framework. In addition a mechanism to reduce the conservativeness of the solution is proposed and applied. Numerical illustration of the results is provided.","PeriodicalId":189753,"journal":{"name":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2017.8046849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper addresses a problem of quadrotor unmanned aerial vehicle (so-called X4-flyer or quadrocopter) utility model identification for control design purposes. To that goal the quadrotor model is assumed to be composed of two abstracted subsystems, namely a rigid body (plant) and four motors equipped with blades (actuators). The model of the former is acquired based on a well-established dynamic equations of motion while the latter is to be identified as a static relationship from laboratory experiments data. Moreover, the actuator model is to account for the on-flight battery power source voltage drop effects. The actuator parameter identification algorithm is kept in a set-membership framework. In addition a mechanism to reduce the conservativeness of the solution is proposed and applied. Numerical illustration of the results is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于控制目的的四旋翼飞行器模型鲁棒辨识
本文解决了四旋翼无人机(X4-flyer或quadrocopter)实用新型识别的控制设计问题。为此,假设四旋翼模型由两个抽象子系统组成,即刚体(植物)和四个配备叶片的电机(致动器)。前者的模型是根据已建立的动力学运动方程得到的,而后者是根据实验室实验数据确定的静态关系。此外,执行器模型还考虑了飞行中电池电源电压降的影响。执行器参数辨识算法保持在集隶属度框架中。此外,提出并应用了一种降低求解保守性的机制。给出了计算结果的数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control of complex robotic systems: Challenges, design and experiments General Lagrangian Jacobian motion planning algorithm for affine robotic systems with application to a space manipulator The impact of vocabulary size and language model order on the polish whispery speech recognition Influence of free convection on heat transfer in control problems for a cylindrical body Backstepping-based sliding mode control of an electro-pneumatic clutch actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1