On fuzzy control based static VAr compensator for power system stability control

M. A. Iskandar, M. Satoh, Y. Ohmori, S. Matoba, T. Okabe, Y. Mizutani
{"title":"On fuzzy control based static VAr compensator for power system stability control","authors":"M. A. Iskandar, M. Satoh, Y. Ohmori, S. Matoba, T. Okabe, Y. Mizutani","doi":"10.1109/ANN.1993.264290","DOIUrl":null,"url":null,"abstract":"The paper presents an application of fuzzy control to determine the control signal of a static VAr compensator (SVC) for improving power system stability. The quantity of reactive power that should be supplied/absorbed by the SVC is calculated depending on the error and the change of error of the electrical power output at each sampling time. The control signal is calculated using fuzzy membership functions. The effectiveness of the proposed control method is demonstrated by a one machine infinite bus system.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper presents an application of fuzzy control to determine the control signal of a static VAr compensator (SVC) for improving power system stability. The quantity of reactive power that should be supplied/absorbed by the SVC is calculated depending on the error and the change of error of the electrical power output at each sampling time. The control signal is calculated using fuzzy membership functions. The effectiveness of the proposed control method is demonstrated by a one machine infinite bus system.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊控制的静态无功补偿器在电力系统稳定控制中的应用
本文介绍了模糊控制在确定静态无功补偿器控制信号中的应用,以提高电力系统的稳定性。SVC应提供/吸收的无功功率根据每次采样时间输出功率的误差和误差变化来计算。采用模糊隶属函数计算控制信号。通过一个单机无限总线系统验证了所提控制方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1