Convergence, convergence point and convergence rate for Steiglitz-McBride method; a unified approach

Mu-Huo Cheng, V. Stonick
{"title":"Convergence, convergence point and convergence rate for Steiglitz-McBride method; a unified approach","authors":"Mu-Huo Cheng, V. Stonick","doi":"10.1109/ICASSP.1994.389986","DOIUrl":null,"url":null,"abstract":"This paper presents a unified approach to analyze the convergence properties of Steiglitz-McBride(1966) method (SMM) in general environments. SMM is formulated as a successive substitution equation. Using results from fixed point theory enables a unified analysis of SMM in both white and colored noise, and sufficient and insufficient order cases. This analysis provides us with several new results. Specifically, for sufficient order filters in white noise environments, the convergence rate of SMM can be predicted by the signal-power to noise-power ratio (SNR) at plant output. For sufficient order filters in colored noise, SMM may diverge or converge depending on the initial estimate and SNR at plant output. If SMM converges, the convergence point is near the unbiased solution. SNR again determines the bias magnitude. For insufficient order filters, in addition to the possible multiple convergence points, we also demonstrate the existence of diverging fixed points of SMM. These diverging fixed points can be used to separate the convergence region, and identify the convergence points for each initial estimate.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a unified approach to analyze the convergence properties of Steiglitz-McBride(1966) method (SMM) in general environments. SMM is formulated as a successive substitution equation. Using results from fixed point theory enables a unified analysis of SMM in both white and colored noise, and sufficient and insufficient order cases. This analysis provides us with several new results. Specifically, for sufficient order filters in white noise environments, the convergence rate of SMM can be predicted by the signal-power to noise-power ratio (SNR) at plant output. For sufficient order filters in colored noise, SMM may diverge or converge depending on the initial estimate and SNR at plant output. If SMM converges, the convergence point is near the unbiased solution. SNR again determines the bias magnitude. For insufficient order filters, in addition to the possible multiple convergence points, we also demonstrate the existence of diverging fixed points of SMM. These diverging fixed points can be used to separate the convergence region, and identify the convergence points for each initial estimate.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steiglitz-McBride方法的收敛性、收敛点和收敛速率统一的方法
本文提出了一种统一的方法来分析Steiglitz-McBride(1966)方法在一般环境下的收敛性。SMM被表示为一个连续的替代方程。利用不动点理论的结果,可以统一分析白噪声和有色噪声、足阶和不足阶情况下的SMM。这一分析为我们提供了几个新的结果。具体来说,对于白噪声环境下的足阶滤波器,SMM的收敛速度可以通过装置输出的信功率与噪声功率比(SNR)来预测。对于彩色噪声中的足够阶数滤波器,SMM可能会发散或收敛,这取决于初始估计和工厂输出的信噪比。如果SMM收敛,则收敛点在无偏解附近。信噪比再次决定偏置幅度。对于不足阶滤波器,除了可能存在多个收敛点外,我们还证明了SMM的发散不动点的存在性。这些发散不动点可用于分离收敛区域,并识别每个初始估计的收敛点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1