Lizheng Gu, Wanchen Yang, W. Che, Dongxu Chen, Yingqi Zhang, W. Feng
{"title":"A Dual-Steerable-Beam Multi-Slot Coupled Metasurface Antenna","authors":"Lizheng Gu, Wanchen Yang, W. Che, Dongxu Chen, Yingqi Zhang, W. Feng","doi":"10.1109/COMPEM.2018.8496675","DOIUrl":null,"url":null,"abstract":"This manuscript proposes a dual-steerable-beam multi-slot coupled metasurface antenna for a potential candidate of the indoor base station application. It consists of $\\pmb{7\\times 10}$ metasurface cells coupled by 4 unequal-spacing slots with a two-port microstrip feeding line. The steerable beams are readily obtained by applying some phase differences between adjacent coupling slots. As a result, the operating band of the proposed antenna ranges from 5.15 GHz to 5.35 GHz for applications of LTE-U band in China. The 10-dB beamwidth of the two beams is around 120° in YOZ plane and the cross level at the junction of the two beams is around −10 dB. Compared with conventional multi-beam antenna arrays, the proposed antenna implements two steerable beams without complex beam-forming network or phase shifters, which can be easily extended to multi-beam indoor base station array design.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This manuscript proposes a dual-steerable-beam multi-slot coupled metasurface antenna for a potential candidate of the indoor base station application. It consists of $\pmb{7\times 10}$ metasurface cells coupled by 4 unequal-spacing slots with a two-port microstrip feeding line. The steerable beams are readily obtained by applying some phase differences between adjacent coupling slots. As a result, the operating band of the proposed antenna ranges from 5.15 GHz to 5.35 GHz for applications of LTE-U band in China. The 10-dB beamwidth of the two beams is around 120° in YOZ plane and the cross level at the junction of the two beams is around −10 dB. Compared with conventional multi-beam antenna arrays, the proposed antenna implements two steerable beams without complex beam-forming network or phase shifters, which can be easily extended to multi-beam indoor base station array design.