Automatic speech recognition of Arabic multi-genre broadcast media

M. Najafian, Wei-Ning Hsu, Ahmed Ali, James R. Glass
{"title":"Automatic speech recognition of Arabic multi-genre broadcast media","authors":"M. Najafian, Wei-Ning Hsu, Ahmed Ali, James R. Glass","doi":"10.1109/ASRU.2017.8268957","DOIUrl":null,"url":null,"abstract":"This paper describes an Arabic Automatic Speech Recognition system developed on 15 hours of Multi-Genre Broadcast (MGB-3) data from YouTube, plus 1,200 hours of Multi-Dialect and Multi-Genre MGB-2 data recorded from the Aljazeera Arabic TV channel. In this paper, we report our investigations of a range of signal pre-processing, data augmentation, topic-specific language model adaptation, accent specific re-training, and deep learning based acoustic modeling topologies, such as feed-forward Deep Neural Networks (DNNs), Time-delay Neural Networks (TDNNs), Long Short-term Memory (LSTM) networks, Bidirectional LSTMs (BLSTMs), and a Bidirectional version of the Prioritized Grid LSTM (BPGLSTM) model. We propose a system combination for three purely sequence trained recognition systems based on lattice-free maximum mutual information, 4-gram language model re-scoring, and system combination using the minimum Bayes risk decoding criterion. The best word error rate we obtained on the MGB-3 Arabic development set using a 4-gram re-scoring strategy is 42.25% for a chain BLSTM system, compared to 65.44% baseline for a DNN system.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper describes an Arabic Automatic Speech Recognition system developed on 15 hours of Multi-Genre Broadcast (MGB-3) data from YouTube, plus 1,200 hours of Multi-Dialect and Multi-Genre MGB-2 data recorded from the Aljazeera Arabic TV channel. In this paper, we report our investigations of a range of signal pre-processing, data augmentation, topic-specific language model adaptation, accent specific re-training, and deep learning based acoustic modeling topologies, such as feed-forward Deep Neural Networks (DNNs), Time-delay Neural Networks (TDNNs), Long Short-term Memory (LSTM) networks, Bidirectional LSTMs (BLSTMs), and a Bidirectional version of the Prioritized Grid LSTM (BPGLSTM) model. We propose a system combination for three purely sequence trained recognition systems based on lattice-free maximum mutual information, 4-gram language model re-scoring, and system combination using the minimum Bayes risk decoding criterion. The best word error rate we obtained on the MGB-3 Arabic development set using a 4-gram re-scoring strategy is 42.25% for a chain BLSTM system, compared to 65.44% baseline for a DNN system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿拉伯语多类型广播媒体语音自动识别
本文描述了一种阿拉伯语自动语音识别系统,该系统是基于来自YouTube的15小时多体裁广播(MGB-3)数据,以及来自半岛电视台阿拉伯语频道的1200小时多方言和多体裁MGB-2数据开发的。在本文中,我们报告了我们对一系列信号预处理、数据增强、特定主题语言模型适应、特定口音再训练和基于深度学习的声学建模拓扑的研究,如前馈深度神经网络(dnn)、时滞神经网络(tdnn)、长短期记忆(LSTM)网络、双向LSTM (blstm)和双向优先网格LSTM (BPGLSTM)模型。我们提出了一种基于无格最大互信息、4克语言模型重新评分和使用最小贝叶斯风险解码准则的系统组合的三种纯序列训练识别系统。我们在使用4克重评分策略的MGB-3阿拉伯语开发集上获得的最佳单词错误率在链BLSTM系统中为42.25%,而DNN系统的基线错误率为65.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable multi-domain dialogue state tracking Topic segmentation in ASR transcripts using bidirectional RNNS for change detection Consistent DNN uncertainty training and decoding for robust ASR Cracking the cocktail party problem by multi-beam deep attractor network ONENET: Joint domain, intent, slot prediction for spoken language understanding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1