Fast semantic segmentation of aerial images based on color and texture

M. Ghiasi, R. Amirfattahi
{"title":"Fast semantic segmentation of aerial images based on color and texture","authors":"M. Ghiasi, R. Amirfattahi","doi":"10.1109/IRANIANMVIP.2013.6780004","DOIUrl":null,"url":null,"abstract":"In this paper, a semantic segmentation method for aerial images is presented. Semantic segmentation allows the task of segmentation and classification to be performed simultaneously in a single efficient step. This algorithm relies on descriptors of color and texture. In the training phase, we first manually extract homogenous areas and label each area semantically. Then color and texture descriptors for each area in the training image are computed. The pool of descriptors and their semantic label are used to build two separate classifiers for color and texture. We tested our algorithm by KNN classifier. To segment a new image, we over-segment it into a number of superpixels. Then we compute texture and color descriptors for each superpixel and classify it based on the trained classifier. This labels the superpixels semantically. Labeling all superpixels provides a segmentation map. We used local binary pattern histogram fourier features and color histograms of RGB images as texture and color descriptors respectively. This algorithm is applied to a large set of aerial images and is proved to have above 95% success rate.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6780004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, a semantic segmentation method for aerial images is presented. Semantic segmentation allows the task of segmentation and classification to be performed simultaneously in a single efficient step. This algorithm relies on descriptors of color and texture. In the training phase, we first manually extract homogenous areas and label each area semantically. Then color and texture descriptors for each area in the training image are computed. The pool of descriptors and their semantic label are used to build two separate classifiers for color and texture. We tested our algorithm by KNN classifier. To segment a new image, we over-segment it into a number of superpixels. Then we compute texture and color descriptors for each superpixel and classify it based on the trained classifier. This labels the superpixels semantically. Labeling all superpixels provides a segmentation map. We used local binary pattern histogram fourier features and color histograms of RGB images as texture and color descriptors respectively. This algorithm is applied to a large set of aerial images and is proved to have above 95% success rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于颜色和纹理的航空图像快速语义分割
本文提出了一种航空图像的语义分割方法。语义分割允许在一个有效的步骤中同时执行分割和分类任务。该算法依赖于颜色和纹理描述符。在训练阶段,我们首先手动提取同质区域,并对每个区域进行语义标记。然后计算训练图像中每个区域的颜色和纹理描述符。描述符池及其语义标签用于构建颜色和纹理两个独立的分类器。我们用KNN分类器测试了我们的算法。为了分割新图像,我们将其过度分割成许多超像素。然后计算每个超像素的纹理和颜色描述符,并根据训练好的分类器对其进行分类。这在语义上标记了超像素。标记所有的超像素提供了一个分割图。我们分别使用RGB图像的局部二值模式直方图傅立叶特征和颜色直方图作为纹理和颜色描述符。将该算法应用于大量的航拍图像,成功率在95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated lung CT image segmentation using kernel mean shift analysis A simple and efficient approach for 3D model decomposition MRI image reconstruction via new K-space sampling scheme based on separable transform Fusion of SPECT and MRI images using back and fore ground information Real time occlusion handling using Kalman Filter and mean-shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1