{"title":"There are no exceptional units in number fields of degree prime to 3 where 3 splits completely","authors":"N. Triantafillou","doi":"10.1090/bproc/80","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a number field with ring of integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript upper K\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>K</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal O_{K}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We prove that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> does not divide <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper K colon double-struck upper Q right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>K</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[K:\\mathbb Q]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> splits completely in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, then there are no exceptional units in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\n <mml:semantics>\n <mml:mi>K</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In other words, there are no <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x comma y element-of script upper O Subscript upper K Superscript times\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>K</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>×<!-- × --></mml:mo>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x, y \\in \\mathcal O_{K}^{\\times }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x plus y equals 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x + y = 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our elementary <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic proof is inspired by the Skolem-Chabauty-Coleman method applied to the restriction of scalars of the projective line minus three points. Applying this result to a problem in arithmetic dynamics, we show that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f element-of script upper O Subscript upper K Baseline left-bracket x right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>K</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f \\in \\mathcal O_{K}[x]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has a finite cyclic orbit in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript upper K\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>K</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal O_{K}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of length <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n element-of StartSet 1 comma 2 comma 4 EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>4</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n \\in \\{1, 2, 4\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Let KK be a number field with ring of integers OK\mathcal O_{K}. We prove that if 33 does not divide [K:Q][K:\mathbb Q] and 33 splits completely in KK, then there are no exceptional units in KK. In other words, there are no x,y∈OK×x, y \in \mathcal O_{K}^{\times } with x+y=1x + y = 1. Our elementary pp-adic proof is inspired by the Skolem-Chabauty-Coleman method applied to the restriction of scalars of the projective line minus three points. Applying this result to a problem in arithmetic dynamics, we show that if f∈OK[x]f \in \mathcal O_{K}[x] has a finite cyclic orbit in OK\mathcal O_{K} of length nn then n∈{1,2,4}n \in \{1, 2, 4\}.
设K K是一个带有整数环的数字域O K \数学上的O_{K}。证明了如果33不能除[K: Q] [K:\mathbb Q]且33在K K中完全分裂,则K K中不存在例外单位。换句话说,不存在x, y∈O K x x, y \ \在数学的O_{K}^{\times}中x + y = 1 x + y = 1。初等p进证明的灵感来自于将Skolem-Chabauty-Coleman方法应用于射影线减三点的标量限制。将此结果应用于算术动力学中的一个问题,证明了如果f∈O K [x] f \in \mathcal O_{K}[x]在O K \mathcal O_{K}中有一个长度为n n的有限循环轨道,则n∈{1,2,4}n \in \{1,2,4 \}。