An efficient use of random forest technique for SAR data classification

Shruti Gupta, Dharmendra Singh, Keshava P. Singh, Sandeep Kumar
{"title":"An efficient use of random forest technique for SAR data classification","authors":"Shruti Gupta, Dharmendra Singh, Keshava P. Singh, Sandeep Kumar","doi":"10.1109/IGARSS.2015.7326520","DOIUrl":null,"url":null,"abstract":"In the past SAR data has been proven as a great source for land cover characterization. For classification purpose many individual methods has been used, but single method are likely to undergo high variance or biasness depending on the base used for classification. Hence, in this paper random forest classification technique has been used for SAR data classification into different land cover classes (urban, water, vegetation and bare soil) which minimizes the diversity amongst the fragile classifiers and produce more accurate predictions. In this regard, an attempt has been made to fuse, four types of measures, namely texture features, SAR observable, statistical features and color features using random forest classifier for land cover classification. The results show that the resultant classified image has better accuracy in comparison to the individual method.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"30 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In the past SAR data has been proven as a great source for land cover characterization. For classification purpose many individual methods has been used, but single method are likely to undergo high variance or biasness depending on the base used for classification. Hence, in this paper random forest classification technique has been used for SAR data classification into different land cover classes (urban, water, vegetation and bare soil) which minimizes the diversity amongst the fragile classifiers and produce more accurate predictions. In this regard, an attempt has been made to fuse, four types of measures, namely texture features, SAR observable, statistical features and color features using random forest classifier for land cover classification. The results show that the resultant classified image has better accuracy in comparison to the individual method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林技术在SAR数据分类中的有效应用
在过去,SAR数据已被证明是土地覆盖特征的重要来源。为了分类目的,已经使用了许多单独的方法,但是根据用于分类的基础,单个方法可能会经历高方差或偏倚。因此,本文使用随机森林分类技术将SAR数据分类为不同的土地覆盖类别(城市、水域、植被和裸土),从而最大限度地减少脆弱分类器之间的多样性,并产生更准确的预测。为此,尝试利用随机森林分类器融合纹理特征、SAR观测特征、统计特征和颜色特征四种测度进行土地覆盖分类。结果表明,与单个方法相比,得到的分类图像具有更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1