{"title":"TOWARDS IMPOSING DAYPARTED RESTRICTIONS ON TOKENISED ENERGY WITHIN PEER-TO-PEER MARKETS","authors":"A. de Villiers, P. Cuffe","doi":"10.1049/icp.2021.1346","DOIUrl":null,"url":null,"abstract":"This piece proposes a novel mechanism for peer-to-peer electricity trading whereby energy tokens can only be redeemed in the same part of the day as when they were generated. The aim of this regulatory mechanism is to reduce token hoarding by consumers to better align the physical production and consumption of electricity, which in turn could decrease electrical system losses and minimise the chance of grid imbalances. To establish the effectiveness of this dayparting mechanism a market simulation is performed. This simulation is made up of 24 consumers and five producers profiles over a seven-day week. An optimisation is performed to most effectively allocate energy tokens from producers to consumers, aiming to minimise the total energy imported from the larger grid i.e. to make most effective use of local generation. Consumers are permitted to perform a measure of demand response by modulating their demand at certain points while keeping their total energy consumption constant. Allocated energy tokens can be consumed immediately, or during any subsequent daypart to the same type. A series of power flow analyses are performed using the market simulation out-turns to establish the electrical system effects. Consumers are found to move some demand to weekend days when demand is lower but generation is equally abundant. Electrical results reveal a decrease in system losses, as well as less fluctuation from the larger grid supply.","PeriodicalId":223615,"journal":{"name":"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This piece proposes a novel mechanism for peer-to-peer electricity trading whereby energy tokens can only be redeemed in the same part of the day as when they were generated. The aim of this regulatory mechanism is to reduce token hoarding by consumers to better align the physical production and consumption of electricity, which in turn could decrease electrical system losses and minimise the chance of grid imbalances. To establish the effectiveness of this dayparting mechanism a market simulation is performed. This simulation is made up of 24 consumers and five producers profiles over a seven-day week. An optimisation is performed to most effectively allocate energy tokens from producers to consumers, aiming to minimise the total energy imported from the larger grid i.e. to make most effective use of local generation. Consumers are permitted to perform a measure of demand response by modulating their demand at certain points while keeping their total energy consumption constant. Allocated energy tokens can be consumed immediately, or during any subsequent daypart to the same type. A series of power flow analyses are performed using the market simulation out-turns to establish the electrical system effects. Consumers are found to move some demand to weekend days when demand is lower but generation is equally abundant. Electrical results reveal a decrease in system losses, as well as less fluctuation from the larger grid supply.