Learning face similarity for re-identification from real surveillance video: A deep metric solution

Pei Li, M. L. Prieto, P. Flynn, D. Mery
{"title":"Learning face similarity for re-identification from real surveillance video: A deep metric solution","authors":"Pei Li, M. L. Prieto, P. Flynn, D. Mery","doi":"10.1109/BTAS.2017.8272704","DOIUrl":null,"url":null,"abstract":"Person re-identification (ReID) is the task of automatically matching persons across surveillance cameras with location or time differences. Nearly all proposed ReID approaches exploit body features. Even if successfully captured in the scene, faces are often assumed to be unhelpful to the ReID process[3]. As cameras and surveillance systems improve, ‘Facial ReID’ approaches deserve attention. The following contributions are made in this work: 1) We describe a high-quality dataset for person re-identification featuring faces. This dataset was collected from a real surveillance network in a municipal rapid transit system, and includes the same people appearing in multiple sites at multiple times wearing different attire. 2) We employ new DNN architectures and patch matching techniques to handle face misalignment in quality regimes where landmarking fails. We further boost the performance by adopting the fully convolutional structure and spatial pyramid pooling (SPP).","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"143 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Person re-identification (ReID) is the task of automatically matching persons across surveillance cameras with location or time differences. Nearly all proposed ReID approaches exploit body features. Even if successfully captured in the scene, faces are often assumed to be unhelpful to the ReID process[3]. As cameras and surveillance systems improve, ‘Facial ReID’ approaches deserve attention. The following contributions are made in this work: 1) We describe a high-quality dataset for person re-identification featuring faces. This dataset was collected from a real surveillance network in a municipal rapid transit system, and includes the same people appearing in multiple sites at multiple times wearing different attire. 2) We employ new DNN architectures and patch matching techniques to handle face misalignment in quality regimes where landmarking fails. We further boost the performance by adopting the fully convolutional structure and spatial pyramid pooling (SPP).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从真实监控视频中学习人脸相似度进行再识别:一个深度度量解决方案
人员再识别(ReID)是通过位置或时间差异自动匹配监控摄像机中的人员的任务。几乎所有提出的ReID方法都利用了身体特征。即使在场景中成功捕获,人脸也通常被认为对ReID过程没有帮助[3]。随着摄像头和监控系统的改进,“面部识别”方法值得关注。本文的主要贡献如下:1)描述了一个高质量的人脸再识别数据集。这个数据集是从一个城市快速交通系统的真实监控网络中收集的,其中包括同一个人在多个地点多次出现,穿着不同的服装。2)我们采用新的深度神经网络架构和补丁匹配技术来处理标记失败的质量体系中的人脸不对准。我们采用全卷积结构和空间金字塔池(SPP)进一步提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1