Development and Application of an Intelligent System to Predict and Optimize the Surface Roughness of 1018 and 4140 Steel

I. Escamilla, P. Perez, L. Torres, Patricia Zambrano
{"title":"Development and Application of an Intelligent System to Predict and Optimize the Surface Roughness of 1018 and 4140 Steel","authors":"I. Escamilla, P. Perez, L. Torres, Patricia Zambrano","doi":"10.1109/CERMA.2008.68","DOIUrl":null,"url":null,"abstract":"The aim of this research is to present a new methodology for predicting and optimizing the surface roughness during machining of 1018 and 4140 Steel. There is particular interest in finding the best machining value parameters that should be used to achieve good surface roughness. These parameter values can be found by this neural intelligent approach. This methodology analyzes and identifies the parameters involved in the machining process; with this information the model is able to predict the surface roughness value in different conditions and then optimize the results with different intelligent heuristics. The experimental results show that we may conclude that this intelligent system is a suitable methodology for predicting and optimizing surface roughness during the machining of 1018 and 4140 Steel.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this research is to present a new methodology for predicting and optimizing the surface roughness during machining of 1018 and 4140 Steel. There is particular interest in finding the best machining value parameters that should be used to achieve good surface roughness. These parameter values can be found by this neural intelligent approach. This methodology analyzes and identifies the parameters involved in the machining process; with this information the model is able to predict the surface roughness value in different conditions and then optimize the results with different intelligent heuristics. The experimental results show that we may conclude that this intelligent system is a suitable methodology for predicting and optimizing surface roughness during the machining of 1018 and 4140 Steel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1018和4140钢表面粗糙度智能预测优化系统的开发与应用
本研究的目的是提出一种预测和优化1018和4140钢加工过程中表面粗糙度的新方法。在寻找最佳的加工值参数,应用于实现良好的表面粗糙度特别感兴趣。这种神经智能方法可以找到这些参数值。该方法分析和识别加工过程中涉及的参数;利用这些信息,该模型能够预测不同条件下的表面粗糙度值,然后利用不同的智能启发式方法对结果进行优化。实验结果表明,该智能系统是一种适用于1018和4140钢加工过程中表面粗糙度预测和优化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling a Vehicle Using Bond Graphs The Laplacian Artificial Potential Field (LAPF) for the Path Planning of Robotic Manipulators Cooperative Adaptive Behavior Acquisition in Mobile Robot Swarms Using Neural Networks and Genetic Algorithms Design and Construction of an EEG Data Acquisition System for Measurement of Auditory Evoked Potentials Proposal for a Remote Surgery System Based on Wireless Communications, Electromyography and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1