Tracking multiple objects using particle filters and digital elevation maps

R. Danescu, F. Oniga, S. Nedevschi, M. Meinecke
{"title":"Tracking multiple objects using particle filters and digital elevation maps","authors":"R. Danescu, F. Oniga, S. Nedevschi, M. Meinecke","doi":"10.1109/IVS.2009.5164258","DOIUrl":null,"url":null,"abstract":"Tracking multiple objects has always been a challenge, and is a crucial problem in the field of driving assistance systems. The particle filter-based trackers have the theoretical possibility of tracking multiple hypotheses, but in practice the particles will cluster around the stronger one. This paper proposes a two-level approach to the multiple object tracking problem. One particle filter-based tracker will search the whole state space for new hypotheses, and when a hypothesis becomes strong enough, it will be passed to an individual object tracker, which will track it until the object is lost. The initialization tracker and the individual object trackers use the same state models and the same measurement technique, based on stereovision-generated elevation maps, and differ only in their use of the estimation results. The proposed solution is a simple and robust one, adaptable to different types of object models and to different types of sensors.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Tracking multiple objects has always been a challenge, and is a crucial problem in the field of driving assistance systems. The particle filter-based trackers have the theoretical possibility of tracking multiple hypotheses, but in practice the particles will cluster around the stronger one. This paper proposes a two-level approach to the multiple object tracking problem. One particle filter-based tracker will search the whole state space for new hypotheses, and when a hypothesis becomes strong enough, it will be passed to an individual object tracker, which will track it until the object is lost. The initialization tracker and the individual object trackers use the same state models and the same measurement technique, based on stereovision-generated elevation maps, and differ only in their use of the estimation results. The proposed solution is a simple and robust one, adaptable to different types of object models and to different types of sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用粒子过滤器和数字高程图跟踪多个对象
在驾驶辅助系统中,多目标跟踪一直是一个难题,也是一个关键问题。基于粒子滤波的跟踪器在理论上具有跟踪多个假设的可能性,但在实践中粒子会聚集在较强的假设周围。本文提出了一种两级多目标跟踪方法。一个基于粒子滤波的跟踪器将在整个状态空间中搜索新的假设,当一个假设变得足够强时,它将被传递给一个单独的对象跟踪器,它将跟踪它,直到对象丢失。初始化跟踪器和单个目标跟踪器使用相同的状态模型和相同的测量技术,基于立体视觉生成的高程图,不同之处在于它们对估计结果的使用。该方法简单、鲁棒性好,适用于不同类型的目标模型和不同类型的传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of communication network for the CBTC system Rear-end collision warning system on account of a rear-end monitoring camera Route memorization in real-time data processing using Run-Length Encoding Ego-motion estimation and moving object tracking using multi-layer LIDAR Incorporating contextual information in pedestrian recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1