Improving the Discrimination of Benign and Malignant Breast MRI Lesions Using the Apparent Diffusion Coefficient

D. McClymont, A. Mehnert, A. Trakic, S. Crozier, D. Kennedy
{"title":"Improving the Discrimination of Benign and Malignant Breast MRI Lesions Using the Apparent Diffusion Coefficient","authors":"D. McClymont, A. Mehnert, A. Trakic, S. Crozier, D. Kennedy","doi":"10.1109/DICTA.2010.101","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation of the apparent diffusion coefficient (ADC) for improving the discrimination of benign and malignant lesions in breast magnetic resonance imaging (MRI). In particular a method is presented for automatically selecting hyper intense tumour voxels in dynamic contrast enhanced (DCE) MRI data and evaluating their average ADC in the corresponding diffusion-weighted (DW) MRI data. The method was applied to ten breast MRI datasets obtained from routine clinical practice. The results demonstrate that the combination of the relative signal increase (DCE-MRI) with the apparent diffusion coefficient (DW-MRI) leads to better discrimination than with either feature alone. The results also suggest that it is important to acquire the DWMRI data in a consistent fashion, i.e. either before or after the acquisition of the DCE-MRI data.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an investigation of the apparent diffusion coefficient (ADC) for improving the discrimination of benign and malignant lesions in breast magnetic resonance imaging (MRI). In particular a method is presented for automatically selecting hyper intense tumour voxels in dynamic contrast enhanced (DCE) MRI data and evaluating their average ADC in the corresponding diffusion-weighted (DW) MRI data. The method was applied to ten breast MRI datasets obtained from routine clinical practice. The results demonstrate that the combination of the relative signal increase (DCE-MRI) with the apparent diffusion coefficient (DW-MRI) leads to better discrimination than with either feature alone. The results also suggest that it is important to acquire the DWMRI data in a consistent fashion, i.e. either before or after the acquisition of the DCE-MRI data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用表观扩散系数提高乳腺MRI良恶性病变的鉴别
本文探讨了表观扩散系数(ADC)在乳腺磁共振成像(MRI)中对良恶性病变鉴别中的应用价值。特别提出了一种在动态对比增强(DCE) MRI数据中自动选择高强度肿瘤体素并在相应的扩散加权(DW) MRI数据中评估其平均ADC的方法。将该方法应用于常规临床实践中获得的10组乳腺MRI数据集。结果表明,相对信号增加(DCE-MRI)与表观扩散系数(DW-MRI)相结合的识别效果优于单独使用任何一种特征。结果还表明,以一致的方式获取DWMRI数据很重要,即在获取DCE-MRI数据之前或之后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1