Memory-Efficient Design Strategy for a Parallel Embedded Integral Image Computation Engine

Shoaib Ehsan, A. Clark, Wah M. Cheung, Arjunsingh M. Bais, Bayar I. Menzat, N. Kanwal, K. Mcdonald-Maier
{"title":"Memory-Efficient Design Strategy for a Parallel Embedded Integral Image Computation Engine","authors":"Shoaib Ehsan, A. Clark, Wah M. Cheung, Arjunsingh M. Bais, Bayar I. Menzat, N. Kanwal, K. Mcdonald-Maier","doi":"10.1109/IMVIP.2011.29","DOIUrl":null,"url":null,"abstract":"In embedded vision systems, parallel computation of the integral image presents several design challenges in terms of hardware resources, speed and power consumption. Although recursive equations significantly reduce the number of operations for computing the integral image, the required internal memory becomes prohibitively large for an embedded integral image computation engine for increasing image sizes. With the objective of achieving high-throughput with minimum hardware resources, this paper proposes a memory-efficient design strategy for a parallel embedded integral image computation engine. Results show that the design achieves nearly 35% reduction in memory for common HD video.","PeriodicalId":179414,"journal":{"name":"2011 Irish Machine Vision and Image Processing Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Irish Machine Vision and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In embedded vision systems, parallel computation of the integral image presents several design challenges in terms of hardware resources, speed and power consumption. Although recursive equations significantly reduce the number of operations for computing the integral image, the required internal memory becomes prohibitively large for an embedded integral image computation engine for increasing image sizes. With the objective of achieving high-throughput with minimum hardware resources, this paper proposes a memory-efficient design strategy for a parallel embedded integral image computation engine. Results show that the design achieves nearly 35% reduction in memory for common HD video.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行嵌入式积分图像计算引擎的内存高效设计策略
在嵌入式视觉系统中,积分图像的并行计算在硬件资源、速度和功耗方面提出了一些设计挑战。虽然递归方程显著地减少了计算积分图像的操作次数,但对于嵌入式积分图像计算引擎来说,为了增加图像大小,所需的内存变得非常大。以最小的硬件资源实现高吞吐量为目标,提出了一种高效内存的并行嵌入式积分图像计算引擎设计策略。结果表明,该设计使普通高清视频的内存减少了近35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmented Vision: Seeing beyond Field of View and Occlusions via Uncalibrated Visual Transfer from Multiple Viewpoints A Feature Set for Enhanced Automatic Segmentation of Hyperspectral Terahertz Images Cell Segmentation in Time-Lapse Phase Contrast Data Optic Flow Providing External Force for Active Contours in Visually Tracking Dense Cell Population Short Stereo Baseline Retroreflector Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1