Discriminant Feature Fusion Strategy for Supervised Learning

Junbao Li, S. Chu, Jung-Chou Harry Chang, Jeng-Shyang Pan
{"title":"Discriminant Feature Fusion Strategy for Supervised Learning","authors":"Junbao Li, S. Chu, Jung-Chou Harry Chang, Jeng-Shyang Pan","doi":"10.1109/IIH-MSP.2006.88","DOIUrl":null,"url":null,"abstract":"An efficient fusion strategy called discriminant feature fusion strategy for supervised learning is proposed to seek the optimal fusion coefficients of feature fusion. Contributions of this paper lie in: 1) creating a constrained optimization problem based on maximum margin criterion for solving the optimal fusion coefficients, which causes that fused data has the largest class discriminant in the fused feature space; 2) keeping an unique solution of optimization problem by transforming the optimization problem to an eigenvalue problem, which causes the fusion strategy to reach a consistent performance. Besides of the detailed theory derivation, many experimental evaluations also are presented in this paper.","PeriodicalId":272579,"journal":{"name":"2006 International Conference on Intelligent Information Hiding and Multimedia","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Intelligent Information Hiding and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2006.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An efficient fusion strategy called discriminant feature fusion strategy for supervised learning is proposed to seek the optimal fusion coefficients of feature fusion. Contributions of this paper lie in: 1) creating a constrained optimization problem based on maximum margin criterion for solving the optimal fusion coefficients, which causes that fused data has the largest class discriminant in the fused feature space; 2) keeping an unique solution of optimization problem by transforming the optimization problem to an eigenvalue problem, which causes the fusion strategy to reach a consistent performance. Besides of the detailed theory derivation, many experimental evaluations also are presented in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督学习的判别特征融合策略
提出了一种有效的基于监督学习的判别特征融合策略,以寻求特征融合的最优融合系数。本文的贡献在于:1)提出了基于最大裕度准则求解最优融合系数的约束优化问题,使得融合数据在融合特征空间中具有最大的类判别式;2)通过将优化问题转化为特征值问题,保持优化问题的唯一解,使融合策略达到一致的性能。本文除了详细的理论推导外,还进行了大量的实验评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adjustable multipath flatted-hexagon search algorithm for block motion estimation An Improved Design and Implementation of Chinese Name Card Recognition System on Mobile Devices A Novel Low-IF Topology for High Performance Integrated Receivers Improved Guided Position Scrambling for Digital Watermarking Decoder-Friendly Subpel MV Selection for H.264/AVC Video Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1