Unmanned Fault Detection in Distribution Lines

Dhananjaya Balladka
{"title":"Unmanned Fault Detection in Distribution Lines","authors":"Dhananjaya Balladka","doi":"10.18280/EJEE.230105","DOIUrl":null,"url":null,"abstract":"The companies supplying electric power round the globe are facing various issues related due to the occurrence of fault in the distribution lines. Most of them are investing on the research and development of state-of-art technologies to boost continuous supply of energy to the users. The consumers can be guaranteed of flawless power if it is possible to identify and rectify the faults at the shorter time span than usual. The usual way to identify the fault and fault location is with the aid of man power. This work deals with the design and fabrication of an intelligent system based on the GSM. This system helps in efficient identification of the fault and location of the fault, initiating a message to the respective crew members and the control station and ensures that the technical crew will be able to reach the location very accurately in shorter time and recapitulate power at the earliest. The setup includes a current sensor, Arduino and a GSM module. The system identifies the location of fault and the data regarding the location of fault is efficiently conveyed to the control personnel or monitoring system over GSM. The location of the fault thus obtained is very fine and accurate, and the time needed to identify the location of flaw is greatly reduced.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/EJEE.230105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The companies supplying electric power round the globe are facing various issues related due to the occurrence of fault in the distribution lines. Most of them are investing on the research and development of state-of-art technologies to boost continuous supply of energy to the users. The consumers can be guaranteed of flawless power if it is possible to identify and rectify the faults at the shorter time span than usual. The usual way to identify the fault and fault location is with the aid of man power. This work deals with the design and fabrication of an intelligent system based on the GSM. This system helps in efficient identification of the fault and location of the fault, initiating a message to the respective crew members and the control station and ensures that the technical crew will be able to reach the location very accurately in shorter time and recapitulate power at the earliest. The setup includes a current sensor, Arduino and a GSM module. The system identifies the location of fault and the data regarding the location of fault is efficiently conveyed to the control personnel or monitoring system over GSM. The location of the fault thus obtained is very fine and accurate, and the time needed to identify the location of flaw is greatly reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配电线路无人故障检测
由于配电线路发生故障,世界各地的供电公司都面临着各种各样的问题。他们中的大多数正在投资于研究和开发最先进的技术,以促进向用户持续供应能源。如果能在较短的时间内发现并排除故障,就能保证用户的用电无故障。通常的故障识别和故障定位方法是借助人力。本文论述了一个基于GSM的智能系统的设计与制作。该系统有助于有效地识别故障和定位故障,向各自的机组人员和控制站发送消息,确保技术人员能够在较短的时间内非常准确地到达位置,并尽早获得电力。该装置包括一个电流传感器、Arduino和一个GSM模块。系统识别故障位置,并将故障位置的数据通过GSM高效地传递给控制人员或监控系统。由此获得的故障位置非常精细和准确,大大减少了识别缺陷位置所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Energy Tracking in a Solar Power System Utilizing Synthetic Neural Network Sensorless Field Oriented Control Applied for an Induction Machine by Using the Discontinuous PWM Strategy Intelligent FOPID and LQR Control for Adaptive a Quarter Vehicle Suspension System Development of Multicellular Converter with Magnetic Coupler for Space Charge Measurement on DC Cable Stability Control Modeling and Simulation Strategy for an Electric Vehicle Using Two Separate Wheel Drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1