DNLM-MA-P: A Parallelization of the Deceived Non Local Means Filter with Moving Average and Symmetric Weighting

Saúl Calderón Ramírez, Jorge Castro, Manuel Zurnbado
{"title":"DNLM-MA-P: A Parallelization of the Deceived Non Local Means Filter with Moving Average and Symmetric Weighting","authors":"Saúl Calderón Ramírez, Jorge Castro, Manuel Zurnbado","doi":"10.1109/IWOBI.2018.8464180","DOIUrl":null,"url":null,"abstract":"This paper presents a novel computational optimization of the deceived non local means filter using moving average and symmetric weighting. The proposed optimization is compared with different approaches that reduce the computational cost of the deceived non local means filter. Furthermore, the impact of parallelizing different optimization approaches is assessed by evaluating the execution time and scalability in Xeon Phi KNL architecture. The proposed optimization for the sequential implementation achieved a 90x speedup, while its parallelized implementation yielded a speedup of up to 1662x.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel computational optimization of the deceived non local means filter using moving average and symmetric weighting. The proposed optimization is compared with different approaches that reduce the computational cost of the deceived non local means filter. Furthermore, the impact of parallelizing different optimization approaches is assessed by evaluating the execution time and scalability in Xeon Phi KNL architecture. The proposed optimization for the sequential implementation achieved a 90x speedup, while its parallelized implementation yielded a speedup of up to 1662x.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNLM-MA-P:具有移动平均和对称加权的欺骗非局部均值滤波器的并行化
本文提出了一种利用移动平均和对称加权对欺骗性非局部均值滤波器进行计算优化的新方法。并将所提出的优化方法与降低欺骗非局部均值滤波器计算量的不同方法进行了比较。此外,通过评估Xeon Phi KNL架构的执行时间和可扩展性来评估并行化不同优化方法的影响。针对顺序实现提出的优化实现了90倍的加速,而其并行化实现则产生了高达1662倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Placement of a Two-Arm Assembly for An Everyday Object Manipulation Humanoid Robot Based on Capability Maps Modules of Correlated Genes in a Gene Expression Regulatory Network of CDDP-Resistant Cancer Cells 2018 IEEE International Work Conference on Bioinspired Intelligence Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives Genome Copy Number Feature Selection Based on Chromosomal Regions Alterations and Chemosensitivity Subtypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1