{"title":"Phoenix: making data-intensive grid applications fault-tolerant","authors":"George Kola, T. Kosar, M. Livny","doi":"10.1109/GRID.2004.51","DOIUrl":null,"url":null,"abstract":"A major hurdle facing data intensive grid applications is the appropriate handling of failures that occur in the grid-environment. Implementing the fault-tolerance transparently at the grid-middleware level would make different data intensive applications fault-tolerant without each having to pay a separate cost and reduce the time to grid-based solution for many scientific problems. We analyzed the failures encountered by four real-life production data intensive applications: NCSA image processing pipeline, WCER video processing pipeline, US-CMS pipeline and BMRB BLAST pipeline. Taking the result of the analysis into account, we have designed and implemented Phoenix, a transparent middleware-level fault-tolerance layer that detects failures early, classifies failures into transient and permanent and appropriately handIes the transient failures. We applied our fault-tolerance layer to a prototype of the NCSA image processing pipeline and considerably improved the failure handling and report on the insights gained in the process.","PeriodicalId":335281,"journal":{"name":"Fifth IEEE/ACM International Workshop on Grid Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth IEEE/ACM International Workshop on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2004.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
A major hurdle facing data intensive grid applications is the appropriate handling of failures that occur in the grid-environment. Implementing the fault-tolerance transparently at the grid-middleware level would make different data intensive applications fault-tolerant without each having to pay a separate cost and reduce the time to grid-based solution for many scientific problems. We analyzed the failures encountered by four real-life production data intensive applications: NCSA image processing pipeline, WCER video processing pipeline, US-CMS pipeline and BMRB BLAST pipeline. Taking the result of the analysis into account, we have designed and implemented Phoenix, a transparent middleware-level fault-tolerance layer that detects failures early, classifies failures into transient and permanent and appropriately handIes the transient failures. We applied our fault-tolerance layer to a prototype of the NCSA image processing pipeline and considerably improved the failure handling and report on the insights gained in the process.