{"title":"The development of high-current power supply system for electrolytic copper-foil","authors":"Fujun Ma, An Luo, Qiaobo Xiong","doi":"10.1109/PEAC.2014.7038097","DOIUrl":null,"url":null,"abstract":"In order to meet the requirements of electrolytic copper-foil, a 6.5V/50kA power supply system composed of ten power modules is developed. The power module is composed of two-leg PWM rectifier and dc/dc converter, and dc/dc converter adopts two full-wave rectifiers in parallel to enhance the output ability. In order to meet the process requirements of electrolytic copper-foil, a virtual impedance based current-sharing control method with load current full feedforward is proposed for n-parallel dc/dc converters. The virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance of converter. It can effectively improve the output performance and eliminate the current-sharing errors. Finally, simulation and industrial application results have verified the structure and control method.","PeriodicalId":309780,"journal":{"name":"2014 International Power Electronics and Application Conference and Exposition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Power Electronics and Application Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEAC.2014.7038097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to meet the requirements of electrolytic copper-foil, a 6.5V/50kA power supply system composed of ten power modules is developed. The power module is composed of two-leg PWM rectifier and dc/dc converter, and dc/dc converter adopts two full-wave rectifiers in parallel to enhance the output ability. In order to meet the process requirements of electrolytic copper-foil, a virtual impedance based current-sharing control method with load current full feedforward is proposed for n-parallel dc/dc converters. The virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance of converter. It can effectively improve the output performance and eliminate the current-sharing errors. Finally, simulation and industrial application results have verified the structure and control method.