An Optimization Strategy for PBFT Consensus Mechanism Based On Consortium Blockchain

Feilong Wang, Yipeng Ji, Mingsheng Liu, Yangyang Li, Xiong Li, Xu Zhang, Xiaojun Shi
{"title":"An Optimization Strategy for PBFT Consensus Mechanism Based On Consortium Blockchain","authors":"Feilong Wang, Yipeng Ji, Mingsheng Liu, Yangyang Li, Xiong Li, Xu Zhang, Xiaojun Shi","doi":"10.1145/3457337.3457843","DOIUrl":null,"url":null,"abstract":"At present, the transaction delay of the consortium block chain applying the Practical Byzantine Fault Tolerance (PBFT) consensus protocol can only reach 2 to 5 seconds, and the throughput cannot reach tens of thousands. In addition as the number of nodes increases, the performance of the consortium block chain declines very quickly. The main challenge of previous research are to realize communication network topology of PBFT algorithm and high information exchange in the case of Byzantine failure, thus, this paper proposes an optimized Byzantine fault-tolerant algorithm to solve the performance bottleneck of the consortium chain. First of all, for the communication network structure of the whole network broadcast, we have reached an agreement on the transaction according to the pre-prepare and prepare phases of PBFT, and generally enter the commit phase, there is a high probability that the leader is honest, so we will communicate with the commit phase The network is optimized as a star communication structure. Second, combined with Tendermint, merge the view-change process of Byzantine failures of the normal consensus process, and switch the leader according to the longest chain principle. The algorithm is based on a partially synchronized network model to ensure the security and liveness of the protocol, and improve the performance and effective robustness.","PeriodicalId":270073,"journal":{"name":"Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457337.3457843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

At present, the transaction delay of the consortium block chain applying the Practical Byzantine Fault Tolerance (PBFT) consensus protocol can only reach 2 to 5 seconds, and the throughput cannot reach tens of thousands. In addition as the number of nodes increases, the performance of the consortium block chain declines very quickly. The main challenge of previous research are to realize communication network topology of PBFT algorithm and high information exchange in the case of Byzantine failure, thus, this paper proposes an optimized Byzantine fault-tolerant algorithm to solve the performance bottleneck of the consortium chain. First of all, for the communication network structure of the whole network broadcast, we have reached an agreement on the transaction according to the pre-prepare and prepare phases of PBFT, and generally enter the commit phase, there is a high probability that the leader is honest, so we will communicate with the commit phase The network is optimized as a star communication structure. Second, combined with Tendermint, merge the view-change process of Byzantine failures of the normal consensus process, and switch the leader according to the longest chain principle. The algorithm is based on a partially synchronized network model to ensure the security and liveness of the protocol, and improve the performance and effective robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于联盟区块链的PBFT共识机制优化策略
目前,应用实用拜占庭容错(PBFT)共识协议的财团区块链的交易延迟只能达到2 ~ 5秒,吞吐量不能达到数万。此外,随着节点数量的增加,联盟区块链的性能下降非常快。以往研究的主要挑战是在拜占庭故障情况下实现PBFT算法的通信网络拓扑和高信息交换,因此,本文提出了一种优化的拜占庭容错算法来解决联盟链的性能瓶颈。首先,对于全网广播的通信网络结构,我们已经根据PBFT的pre-prepare和prepare阶段就交易达成了协议,一般进入commit阶段,leader是诚实的概率很大,所以我们将与commit阶段进行通信,将网络优化为星型通信结构。第二,结合Tendermint,合并正常共识过程中拜占庭失效的换视图过程,根据最长链原理切换leader。该算法基于部分同步网络模型,保证了协议的安全性和活动性,提高了协议的性能和有效的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchains, Security, and Infrastructures: What we Know and What we Can Know FutureText: A Blockchain-based Contract Signing Prototype with Security and Convenience Session details: BSCI Short Paper Session 1 Decentralised Peer-to-Peer Crop Insurance Session details: BSCI Session 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1