An Interactive Web-based Decision Support System for Mass Dispensing, Emergency Preparedness, and Biosurveillance

Eva K. Lee, F. Pietz, Chien-Hung Chen, Yifan Liu
{"title":"An Interactive Web-based Decision Support System for Mass Dispensing, Emergency Preparedness, and Biosurveillance","authors":"Eva K. Lee, F. Pietz, Chien-Hung Chen, Yifan Liu","doi":"10.1145/3079452.3079473","DOIUrl":null,"url":null,"abstract":"In this study, we present an interactive web-based real-time decision support suite, RealOpt©. The system integrates visualization, information and cognitive analytics, and dynamic large-scale computational modeling and optimization tools that allow public health emergency preparedness coordinators to determine optimal response facilities and locations, resource needs and supply-routes, and population flow in real time. With an eye towards flexibility and future system expansion, RealOpt is designed in modular format allowing direct linkage to multiple functional modules. Currently, the system has twelve modules covering emergency response preparedness and operations for biological, chemical, radiological/nuclear incidents, biosurveillance, epidemiology, and decontamination models, operations logistics and networks, a real-time crowd sourcing data feed, and evacuation planning. RealOpt has been used for biodefense and H1N1 regional planning and operations, regional flood and hurricane responses, 2010 Haiti earthquake disaster relief, 2011 Japan Fukushima disaster, 2014-2015 Ebola containment assistance and after-event public health preparedness training in West Africa, and current Zika virus containment analysis. The fast solution engines enable real-time use for rapid decision and scenario analysis, since it requires only one CPU minute to determine an optimal network of facilities and resource needs to serve a population of over 10 million.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, we present an interactive web-based real-time decision support suite, RealOpt©. The system integrates visualization, information and cognitive analytics, and dynamic large-scale computational modeling and optimization tools that allow public health emergency preparedness coordinators to determine optimal response facilities and locations, resource needs and supply-routes, and population flow in real time. With an eye towards flexibility and future system expansion, RealOpt is designed in modular format allowing direct linkage to multiple functional modules. Currently, the system has twelve modules covering emergency response preparedness and operations for biological, chemical, radiological/nuclear incidents, biosurveillance, epidemiology, and decontamination models, operations logistics and networks, a real-time crowd sourcing data feed, and evacuation planning. RealOpt has been used for biodefense and H1N1 regional planning and operations, regional flood and hurricane responses, 2010 Haiti earthquake disaster relief, 2011 Japan Fukushima disaster, 2014-2015 Ebola containment assistance and after-event public health preparedness training in West Africa, and current Zika virus containment analysis. The fast solution engines enable real-time use for rapid decision and scenario analysis, since it requires only one CPU minute to determine an optimal network of facilities and resource needs to serve a population of over 10 million.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模配药、应急准备和生物监测的交互式网络决策支持系统
在这项研究中,我们提出了一个交互式的基于网络的实时决策支持套件,RealOpt©。该系统集成了可视化、信息和认知分析、动态大规模计算建模和优化工具,使公共卫生应急准备协调员能够实时确定最佳响应设施和地点、资源需求和供应路线以及人口流动。着眼于灵活性和未来系统的扩展,RealOpt采用模块化设计,允许直接连接多个功能模块。目前,该系统有12个模块,涵盖生物、化学、放射性/核事件的应急准备和操作、生物监测、流行病学和去污模型、操作后勤和网络、实时人群外包数据馈送和疏散规划。RealOpt已被用于生物防御和甲型H1N1流感区域规划和行动、区域洪水和飓风应对、2010年海地地震救灾、2011年日本福岛灾难、2014-2015年西非埃博拉疫情控制援助和事后公共卫生准备培训,以及当前的寨卡病毒控制分析。快速解决方案引擎支持实时使用,用于快速决策和场景分析,因为它只需要一分钟的CPU时间来确定为超过1000万人口服务的设施和资源需求的最佳网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Gene-Disease Relations from Text to Support Biomarker Discovery Towards Health (Aware) Recommender Systems A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications FitBit Garden: A Mobile Game Designed to Increase Physical Activity in Children Health Misinformation in Search and Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1