Hunting for Hidden RDP-MITM: Analyzing and Detecting RDP MITM Tools Based on Network Features

Hao Miao, Zhou-yu Zhou, Renjie Li, Fengyuan Shi, Wei Yang, Shu Li, Qingyun Liu
{"title":"Hunting for Hidden RDP-MITM: Analyzing and Detecting RDP MITM Tools Based on Network Features","authors":"Hao Miao, Zhou-yu Zhou, Renjie Li, Fengyuan Shi, Wei Yang, Shu Li, Qingyun Liu","doi":"10.1109/ISCC58397.2023.10218180","DOIUrl":null,"url":null,"abstract":"Remote Desktop Protocol (RDP) is commonly used for remote access to windows computers. As more and more people work remotely, the number of users of RDP is increasing, making RDP a growing concern in cybersecurity. The latest way to threaten RDP security is RDP man-in-the-middle (MITM) tools which realize the MITM function in an RDP connection and automate the MITM attack process, significantly reducing the difficulty of network attacks. At the same time, RDP MITM tools can be used for high-interaction RDP honeypots. In order to mitigate this risk, we present the first in-depth study of RDP MITM tools in this paper. By analysis and experiment, we identify network features that can be used to detect RDP MITM tools effectively. Based on packet latency and TLS handshake, we propose a machine learning classifier that can detect RDP MITM tools for securing RDP connections. Finally, we analyze the deployment of RDP MITM tools in the wild and effectively measure the RDP MITM tools using our proposed detection approach.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote Desktop Protocol (RDP) is commonly used for remote access to windows computers. As more and more people work remotely, the number of users of RDP is increasing, making RDP a growing concern in cybersecurity. The latest way to threaten RDP security is RDP man-in-the-middle (MITM) tools which realize the MITM function in an RDP connection and automate the MITM attack process, significantly reducing the difficulty of network attacks. At the same time, RDP MITM tools can be used for high-interaction RDP honeypots. In order to mitigate this risk, we present the first in-depth study of RDP MITM tools in this paper. By analysis and experiment, we identify network features that can be used to detect RDP MITM tools effectively. Based on packet latency and TLS handshake, we propose a machine learning classifier that can detect RDP MITM tools for securing RDP connections. Finally, we analyze the deployment of RDP MITM tools in the wild and effectively measure the RDP MITM tools using our proposed detection approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找隐藏的RDP-MITM:基于网络特征的RDP MITM工具分析与检测
远程桌面协议(RDP)通常用于远程访问windows计算机。随着越来越多的人远程工作,RDP的用户数量不断增加,使得RDP在网络安全中越来越受到关注。威胁RDP安全的最新手段是RDP MITM (man-in-the-middle)工具,它在RDP连接中实现MITM功能,使MITM攻击过程自动化,大大降低了网络攻击的难度。同时,RDP MITM工具可以用于高交互的RDP蜜罐。为了降低这种风险,我们在本文中首次对RDP MITM工具进行了深入研究。通过分析和实验,我们确定了可用于有效检测RDP MITM工具的网络特征。基于数据包延迟和TLS握手,我们提出了一个机器学习分类器,可以检测RDP MITM工具来保护RDP连接。最后,我们分析了RDP MITM工具在野外的部署,并使用我们提出的检测方法有效地测量了RDP MITM工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1