{"title":"Detecting SNPs-disease associations using Bayesian networks","authors":"Bing Han, Xue-wen Chen","doi":"10.1109/BIBM.2010.5706532","DOIUrl":null,"url":null,"abstract":"Epistatic interactions play a significant role in improving pathogenesis, prevention, diagnosis and treatment of complex human diseases. A recent study in automatic detection of epistatic interactions showed that Markov Blanket-based methods are capable of finding SNPs (single-nucleotide polymorphism) that have a strong association with common diseases and of reducing false positives when the number of instances is large. Unfortunately, a typical SNP dataset consists of very limited number of examples, where current methods including Markov Blanket-based methods perform poorly. To address small sample problems, we propose a Bayesian network-based approach to detect epistatic interactions. The proposed method also employs a Branch-and-Bound technique for learning. We apply the proposed method to simulated datasets based on four disease models and a real dataset. Experimental results show that our method significantly outperforms Markov Blanket-based methods and other commonly-used methods, especially when the number of samples is small.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Epistatic interactions play a significant role in improving pathogenesis, prevention, diagnosis and treatment of complex human diseases. A recent study in automatic detection of epistatic interactions showed that Markov Blanket-based methods are capable of finding SNPs (single-nucleotide polymorphism) that have a strong association with common diseases and of reducing false positives when the number of instances is large. Unfortunately, a typical SNP dataset consists of very limited number of examples, where current methods including Markov Blanket-based methods perform poorly. To address small sample problems, we propose a Bayesian network-based approach to detect epistatic interactions. The proposed method also employs a Branch-and-Bound technique for learning. We apply the proposed method to simulated datasets based on four disease models and a real dataset. Experimental results show that our method significantly outperforms Markov Blanket-based methods and other commonly-used methods, especially when the number of samples is small.