Capturing Optimal Image Networks for Planar Camera Calibration

Brendan P. Byrne, J. Mallon, P. Whelan
{"title":"Capturing Optimal Image Networks for Planar Camera Calibration","authors":"Brendan P. Byrne, J. Mallon, P. Whelan","doi":"10.1109/IMVIP.2011.17","DOIUrl":null,"url":null,"abstract":"This paper details a novel approach to specifying the optimal pose of planar targets in camera calibration that both reduces the number of images required, and improves the parameter estimates. This is accomplished within a semi supervised trategy where virtual images of planar calibration targets are generated and displayed. These virtual targets are then replicated by the user to generate an image network with optimal geometry for the recovery of the camera parameters. Optimal planar pose is specified by enforcing maximum independence within the calibration constraints offered by each image within the network. This solution space is further refined to ensure that the generated target pose is suitable for easy acquisition and subsequent feature extraction processes. The results on simulated and real data demonstrate that proper consideration of image network geometry directly leads to more accurate camera parameter estimates.","PeriodicalId":179414,"journal":{"name":"2011 Irish Machine Vision and Image Processing Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Irish Machine Vision and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2011.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper details a novel approach to specifying the optimal pose of planar targets in camera calibration that both reduces the number of images required, and improves the parameter estimates. This is accomplished within a semi supervised trategy where virtual images of planar calibration targets are generated and displayed. These virtual targets are then replicated by the user to generate an image network with optimal geometry for the recovery of the camera parameters. Optimal planar pose is specified by enforcing maximum independence within the calibration constraints offered by each image within the network. This solution space is further refined to ensure that the generated target pose is suitable for easy acquisition and subsequent feature extraction processes. The results on simulated and real data demonstrate that proper consideration of image network geometry directly leads to more accurate camera parameter estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面摄像机标定的最优图像网络捕获
本文详细介绍了一种在摄像机标定中确定平面目标最优位姿的新方法,该方法既减少了所需图像的数量,又改善了参数估计。这是在半监督策略中完成的,其中生成和显示平面校准目标的虚拟图像。然后由用户复制这些虚拟目标,以生成具有最佳几何形状的图像网络,以恢复相机参数。通过在网络中每个图像提供的校准约束内强制最大独立性来指定最优平面位姿。该解空间进一步细化,以确保生成的目标姿态适合于易于获取和随后的特征提取过程。模拟和实际数据的结果表明,适当考虑图像网络的几何形状直接导致更准确的相机参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmented Vision: Seeing beyond Field of View and Occlusions via Uncalibrated Visual Transfer from Multiple Viewpoints A Feature Set for Enhanced Automatic Segmentation of Hyperspectral Terahertz Images Cell Segmentation in Time-Lapse Phase Contrast Data Optic Flow Providing External Force for Active Contours in Visually Tracking Dense Cell Population Short Stereo Baseline Retroreflector Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1