Upper Confidence Interval Strategies for Multi-Armed Bandits with Entropy Rewards

N. Weinberger, M. Yemini
{"title":"Upper Confidence Interval Strategies for Multi-Armed Bandits with Entropy Rewards","authors":"N. Weinberger, M. Yemini","doi":"10.1109/ISIT50566.2022.9834746","DOIUrl":null,"url":null,"abstract":"We introduce a multi-armed bandit problem with information-based rewards. At each round, a player chooses an arm, observes a symbol, and receives an unobserved reward in the form of the symbol’s self-information. The player aims to maximize the expected total reward associated with the entropy values of the arms played. We propose two algorithms based on upper confidence bounds (UCB) for this model. The first algorithm optimistically corrects the bias term in the entropy estimation. The second algorithm relies on data-dependent UCBs that adapt to sources with small entropy values. We provide performance guarantees by upper bounding the expected regret of each of the algorithms, and compare their asymptotic behavior to the Lai-Robbins lower bound. Finally, we provide numerical results illustrating the regret of the algorithms presented.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce a multi-armed bandit problem with information-based rewards. At each round, a player chooses an arm, observes a symbol, and receives an unobserved reward in the form of the symbol’s self-information. The player aims to maximize the expected total reward associated with the entropy values of the arms played. We propose two algorithms based on upper confidence bounds (UCB) for this model. The first algorithm optimistically corrects the bias term in the entropy estimation. The second algorithm relies on data-dependent UCBs that adapt to sources with small entropy values. We provide performance guarantees by upper bounding the expected regret of each of the algorithms, and compare their asymptotic behavior to the Lai-Robbins lower bound. Finally, we provide numerical results illustrating the regret of the algorithms presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熵奖励下多武装盗匪的上置信区间策略
我们引入了一个基于信息奖励的多武装强盗问题。在每一轮中,玩家选择一只手臂,观察一个符号,并以符号的自我信息的形式获得一个未被观察到的奖励。玩家的目标是最大化与所玩武器的熵值相关的预期总奖励。我们提出了两种基于上置信度(UCB)的算法。第一种算法乐观地修正了熵估计中的偏差项。第二种算法依赖于数据依赖的ucb,该ucb适应具有小熵值的源。我们通过每个算法的期望遗憾上限来提供性能保证,并将它们的渐近行为与Lai-Robbins下界进行比较。最后,我们提供了数值结果来说明所提出算法的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1