Design and Analysis of Experiments in ANFIS Modeling of a 3-DOF Planner Manipulator

Muhammed Gaafar, A. Maged, M. Magdy, N. A. Mansour, A. El-Betar
{"title":"Design and Analysis of Experiments in ANFIS Modeling of a 3-DOF Planner Manipulator","authors":"Muhammed Gaafar, A. Maged, M. Magdy, N. A. Mansour, A. El-Betar","doi":"10.1109/JEC-ECC.2018.8679552","DOIUrl":null,"url":null,"abstract":"In robot kinematics and control, it is very hard to find the solution of inverse kinematics. Conventional methods including algebraic and geometric cannot be always adequate for complex joint structures. Adaptive Neuro-Fuzzy Inference System (ANFIS) can be easier to apply and more efficient compared to these methods. The problem encountered with ANFIS usually occurs in the designing process. it includes the setting of various parameters which can be complicated and time-intensive for iterations. Facing this problem, in this paper, a Design of Experiment (DoE) methodology will be used to optimize the significant parameters of ANFIS when it is applied to inverse kinematics solution. Using Response Surface Methodology (RSM), four factors are considered as input variables. Results show that the validation error can be significantly improved using the proposed scheme. For each theta, the significant parameters were determined, and the optimal values were presented.","PeriodicalId":197824,"journal":{"name":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2018.8679552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In robot kinematics and control, it is very hard to find the solution of inverse kinematics. Conventional methods including algebraic and geometric cannot be always adequate for complex joint structures. Adaptive Neuro-Fuzzy Inference System (ANFIS) can be easier to apply and more efficient compared to these methods. The problem encountered with ANFIS usually occurs in the designing process. it includes the setting of various parameters which can be complicated and time-intensive for iterations. Facing this problem, in this paper, a Design of Experiment (DoE) methodology will be used to optimize the significant parameters of ANFIS when it is applied to inverse kinematics solution. Using Response Surface Methodology (RSM), four factors are considered as input variables. Results show that the validation error can be significantly improved using the proposed scheme. For each theta, the significant parameters were determined, and the optimal values were presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三自由度规划机械臂ANFIS建模的实验设计与分析
在机器人运动学与控制中,求解运动学逆解是一个非常困难的问题。包括代数和几何在内的传统方法并不总是适用于复杂的节理结构。与这些方法相比,自适应神经模糊推理系统(ANFIS)更容易应用,效率更高。ANFIS遇到的问题通常发生在设计过程中。它包括各种参数的设置,这些参数对于迭代来说可能是复杂和耗时的。针对这一问题,本文将采用实验设计(Design of Experiment, DoE)方法对ANFIS应用于运动学逆解时的重要参数进行优化。采用响应面法(RSM),将四个因素作为输入变量。结果表明,采用该方案可以显著改善验证误差。对于每个theta,确定显著参数,并给出最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Controlling the Frequency Response of a Cantilever-Based Energy Harvesters Using Split Piezoelectric Elements PLANTAE: An IoT-Based Predictive Platform for Precision Agriculture Practical Detection of Microwave Line of Sight Fading in Mobile Networks Situation-Based Dynamic Frame-Rate Control for on-Line Object Tracking Comparison with Assured Transfer of Information Mechanisms in MQTT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1