Robust anisotropic diffusion to produce clear statistical parametric map from noisy fMRI

H. Y. Kim, Z. Cho
{"title":"Robust anisotropic diffusion to produce clear statistical parametric map from noisy fMRI","authors":"H. Y. Kim, Z. Cho","doi":"10.1109/SIBGRA.2002.1167118","DOIUrl":null,"url":null,"abstract":"Functional magnetic resonance imaging (fMRI) uses MRI to noninvasively map areas of increased neuronal activity in human brain without the use of an exogenous contrast agent. Low signal-to-noise ratio of fMRI images makes it necessary to use sophisticated image processing techniques, such as statistical parametric map (SPM), to detect activated brain areas. This paper presents a new technique to obtain clear SPM from noisy fMRI data. It is based on the robust anisotropic diffusion. A direct application of the anisotropic diffusion to fMRI does not work, mainly due to the lack of sharp boundaries between activated and non-activated regions. To overcome this difficulty, we propose to calculate SPM from noisy fMRI, compute diffusion coefficients in the SPM space, and then perform the diffusion in fMRI images using the coefficients previously computed. These steps are iterated until the convergence. Experimental results using the new technique yielded surprisingly sharp and noiseless SPMs.","PeriodicalId":286814,"journal":{"name":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.2002.1167118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Functional magnetic resonance imaging (fMRI) uses MRI to noninvasively map areas of increased neuronal activity in human brain without the use of an exogenous contrast agent. Low signal-to-noise ratio of fMRI images makes it necessary to use sophisticated image processing techniques, such as statistical parametric map (SPM), to detect activated brain areas. This paper presents a new technique to obtain clear SPM from noisy fMRI data. It is based on the robust anisotropic diffusion. A direct application of the anisotropic diffusion to fMRI does not work, mainly due to the lack of sharp boundaries between activated and non-activated regions. To overcome this difficulty, we propose to calculate SPM from noisy fMRI, compute diffusion coefficients in the SPM space, and then perform the diffusion in fMRI images using the coefficients previously computed. These steps are iterated until the convergence. Experimental results using the new technique yielded surprisingly sharp and noiseless SPMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒各向异性扩散从噪声fMRI产生清晰的统计参数图
功能磁共振成像(fMRI)使用MRI无创地绘制人脑中神经元活动增加的区域,而无需使用外源性造影剂。功能磁共振成像图像的低信噪比使得必须使用复杂的图像处理技术,如统计参数图(SPM)来检测激活的大脑区域。本文提出了一种从有噪声的fMRI数据中获得清晰SPM的新技术。它基于鲁棒各向异性扩散。将各向异性扩散直接应用于fMRI是行不通的,这主要是由于激活区和非激活区之间缺乏明确的边界。为了克服这一困难,我们提出从有噪声的fMRI中计算SPM,计算SPM空间中的扩散系数,然后使用先前计算的系数在fMRI图像中进行扩散。这些步骤迭代直到收敛。使用新技术的实验结果产生了令人惊讶的尖锐和无噪声的spm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical maps visualization Texture feature neural classifier for remote sensing image retrieval systems Visualizing inner structures in multimodal volume data Linear features detection in SAR images for urban analysis Towards point-based acquisition and rendering of large real-world environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1