{"title":"A NOVEL DISPARITY-ASSISTED BLOCK MATCHING-BASED APPROACH FOR SUPER-RESOLUTION OF LIGHT FIELD IMAGES","authors":"S. Farag, V. Velisavljevic","doi":"10.1109/3DTV.2018.8478627","DOIUrl":null,"url":null,"abstract":"Currently, available plenoptic imaging technology has limited resolution. That makes it challenging to use this technology in applications, where sharpness is essential, such as film industry. Previous attempts aimed at enhancing the spatial resolution of plenoptic light field (LF) images were based on block and patch matching inherited from classical image super-resolution, where multiple views were considered as separate frames. By contrast to these approaches, a novel super-resolution technique is proposed in this paper with a focus on exploiting estimated disparity information to reduce the matching area in the super-resolution process. We estimate the disparity information from the interpolated LR view point images (VPs). We denote our method as light field block matching super-resolution. We additionally combine our novel super-resolution method with directionally adaptive image interpolation from [1] to preserve sharpness of the high-resolution images. We prove a steady gain in the PSNR and SSIM quality of the super-resolved images for the resolution enhancement factor 8×8 as compared to the recent approaches and also to our previous work [2].","PeriodicalId":267389,"journal":{"name":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2018.8478627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Currently, available plenoptic imaging technology has limited resolution. That makes it challenging to use this technology in applications, where sharpness is essential, such as film industry. Previous attempts aimed at enhancing the spatial resolution of plenoptic light field (LF) images were based on block and patch matching inherited from classical image super-resolution, where multiple views were considered as separate frames. By contrast to these approaches, a novel super-resolution technique is proposed in this paper with a focus on exploiting estimated disparity information to reduce the matching area in the super-resolution process. We estimate the disparity information from the interpolated LR view point images (VPs). We denote our method as light field block matching super-resolution. We additionally combine our novel super-resolution method with directionally adaptive image interpolation from [1] to preserve sharpness of the high-resolution images. We prove a steady gain in the PSNR and SSIM quality of the super-resolved images for the resolution enhancement factor 8×8 as compared to the recent approaches and also to our previous work [2].