Solution of ac/dc power flow on a multiterminal HVDC system: Illustrative case supergrid phase I

F. Gonzalez-Longatt, J. Roldan, C. Charalambous
{"title":"Solution of ac/dc power flow on a multiterminal HVDC system: Illustrative case supergrid phase I","authors":"F. Gonzalez-Longatt, J. Roldan, C. Charalambous","doi":"10.1109/UPEC.2012.6398554","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for the sequential solution of the ac/dc power flow, which is proposed for the analysis of multi-terminal HVDC systems (MTDC). This sequential power flow algorithm can be implemented easily in an existing ac power flow package and is very flexible when it compared with unified methods. Gauss-Siedel algorithm is used to solve dc power balance equations, it offers two keys advantages: very fast and simple computational implementation, and errors do not accumulate during the calculation. The algorithm is tested using the WSCC 3-machine, 9-bus system with a 3-terminal MTDC network and results compared with those obtained from DIgSILENT® PowerFactoryTM demonstrating the validity of the proposed algorithm. As aggregate value, a representative test case of the projected scheme for the phase I of the Supergrid project on the North Sea is presented, the proposed approach presented in this paper is used to calculate DC power flows for some scenarios.","PeriodicalId":326950,"journal":{"name":"2012 47th International Universities Power Engineering Conference (UPEC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 47th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2012.6398554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This paper presents an algorithm for the sequential solution of the ac/dc power flow, which is proposed for the analysis of multi-terminal HVDC systems (MTDC). This sequential power flow algorithm can be implemented easily in an existing ac power flow package and is very flexible when it compared with unified methods. Gauss-Siedel algorithm is used to solve dc power balance equations, it offers two keys advantages: very fast and simple computational implementation, and errors do not accumulate during the calculation. The algorithm is tested using the WSCC 3-machine, 9-bus system with a 3-terminal MTDC network and results compared with those obtained from DIgSILENT® PowerFactoryTM demonstrating the validity of the proposed algorithm. As aggregate value, a representative test case of the projected scheme for the phase I of the Supergrid project on the North Sea is presented, the proposed approach presented in this paper is used to calculate DC power flows for some scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多终端高压直流系统交直流潮流的求解:超级电网一期实例
针对多终端直流输电系统(MTDC)的分析,提出了一种交直流潮流序贯求解算法。该顺序潮流算法可以在现有的交流潮流包中轻松实现,与统一的方法相比具有很大的灵活性。采用高斯-塞德尔算法求解直流功率平衡方程,具有计算速度快、实现简单、计算过程中不积累误差等两个关键优点。该算法在WSCC 3机9总线系统和3端MTDC网络上进行了测试,并与DIgSILENT®PowerFactoryTM的结果进行了比较,证明了该算法的有效性。最后,以北海超级电网一期工程规划方案为例,给出了具有代表性的试验案例,并应用本文提出的方法计算了一些场景下的直流潮流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of smart metering infrastructure using simulation tool Active power control from large offshore wind farms Performance study of distributed state estimation algorithms on the HiPerDNO HPC platform Current-sensoreless Boost converter for Maximum Power Tracking of thermoelectric generators Adaptive NeuroFuzzy Legendre based damping control paradigm for SSSC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1