A. Barnes, J. Balda, Scott O. Geurin, A. Escobar-Mejía
{"title":"Optimal battery chemistry, capacity selection, charge/discharge schedule, and lifetime of energy storage under time-of-use pricing","authors":"A. Barnes, J. Balda, Scott O. Geurin, A. Escobar-Mejía","doi":"10.1109/ISGTEurope.2011.6162702","DOIUrl":null,"url":null,"abstract":"Energy storage units (ESU) can reduce the cost of purchased electricity under time-of-use (TOU) pricing. To maximize the cost reduction, the chemistries, capacities, and charge/discharge schedules of the batteries used in the ESU must be selected appropriately. The batteries must have sufficient capacities to supply the energy demanded by the charge/discharge profiles and to meet the project lifetime. The ESU responds to a TOU price structure. The ESU output power is limited by the rating of the power electronic interface. The cost of the ESU is assumed to increase linearly with battery capacity. A method using linear optimization is developed that determines the battery chemistries, capacities, and charge/discharge schedules simultaneously. The method shows that the Li-Ion battery chemistry is the most cost effective technology due to its high efficiency and that an 11-year project lifetime is most profitable.","PeriodicalId":419250,"journal":{"name":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2011.6162702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Energy storage units (ESU) can reduce the cost of purchased electricity under time-of-use (TOU) pricing. To maximize the cost reduction, the chemistries, capacities, and charge/discharge schedules of the batteries used in the ESU must be selected appropriately. The batteries must have sufficient capacities to supply the energy demanded by the charge/discharge profiles and to meet the project lifetime. The ESU responds to a TOU price structure. The ESU output power is limited by the rating of the power electronic interface. The cost of the ESU is assumed to increase linearly with battery capacity. A method using linear optimization is developed that determines the battery chemistries, capacities, and charge/discharge schedules simultaneously. The method shows that the Li-Ion battery chemistry is the most cost effective technology due to its high efficiency and that an 11-year project lifetime is most profitable.