Jia Zhang, P. Votava, Tsengdar J. Lee, Shrikant Adhikarla, I. Kulkumjon, Matthew Schlau, Divya Natesan, R. Nemani
{"title":"A Technique of Analyzing Trust Relationships to Facilitate Scientific Service Discovery and Recommendation","authors":"Jia Zhang, P. Votava, Tsengdar J. Lee, Shrikant Adhikarla, I. Kulkumjon, Matthew Schlau, Divya Natesan, R. Nemani","doi":"10.1109/SCC.2013.104","DOIUrl":null,"url":null,"abstract":"Most of the existing service discovery methods focus on finding candidate services based on functional and non-functional requirements. However, while the open science community engenders many similar scientific services, how to differentiate them remains a challenge. This paper proposes a trust model that leverages the implicit human factor to help quantify the trustworthiness of candidate services. A hierarchical Knowledge-Social-Trust (KST) network model is established to draw hidden information from various publication repositories (e.g., DBLP) and social networks (e.g., Twitter). As a proof of concept, a prototyping service has been developed to help scientists evaluate and visualize trust of services. The performance factor is studied and experience is reported.","PeriodicalId":370898,"journal":{"name":"2013 IEEE International Conference on Services Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Services Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2013.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Most of the existing service discovery methods focus on finding candidate services based on functional and non-functional requirements. However, while the open science community engenders many similar scientific services, how to differentiate them remains a challenge. This paper proposes a trust model that leverages the implicit human factor to help quantify the trustworthiness of candidate services. A hierarchical Knowledge-Social-Trust (KST) network model is established to draw hidden information from various publication repositories (e.g., DBLP) and social networks (e.g., Twitter). As a proof of concept, a prototyping service has been developed to help scientists evaluate and visualize trust of services. The performance factor is studied and experience is reported.